Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When aluminum foil is placed in hydrochloric acid, nothing happens for the first 30 seconds or so. This is followed by vigorous bubbling and the eventual disappearance of the foil. Explain these observations.

Short Answer

Expert verified
In the reaction between aluminum foil and hydrochloric acid, the initial delay in visible reaction is due to the protective oxide layer on the aluminum surface and limited contact between reactants. Once the acid penetrates the oxide layer, the reaction produces aluminum chloride and hydrogen gas, resulting in vigorous bubbling. As aluminum is converted to aluminum chloride and dissolves in the solution, the foil eventually disappears.

Step by step solution

01

1. Understanding the reaction between aluminum and hydrochloric acid

: Aluminum reacts with hydrochloric acid (HCl) to form aluminum chloride (AlCl3) and hydrogen gas (H2). The balanced chemical equation for this reaction can be written as: \[2Al(s) + 6HCl(aq) → 2AlCl3(aq) + 3H2(g)\]
02

2. Analyzing the delay in visible reaction

: Initially, when the aluminum foil is placed in hydrochloric acid, it appears that nothing is happening. This delay in the visible reaction may be due to two factors: 1. The presence of an oxide layer on the surface of the aluminum foil; this layer forms as aluminum reacts with oxygen in the air, creating a thin layer of aluminum oxide (Al2O3) that acts as a protective barrier. 2. The initial slow reaction rate due to the relatively low concentration of aluminum and hydrochloric acid, and the fact that their contact is initially limited to the surface area of the aluminum foil.
03

3. Explaining the vigorous bubbling and disappearance of the aluminum foil

: Once the hydrochloric acid penetrates the oxide layer on the aluminum foil, it reacts with the aluminum metal, forming aluminum chloride and hydrogen gas. This reaction produces bubbles of hydrogen gas, which are visible as vigorous bubbling. As the reaction progresses, more and more aluminum is converted into aluminum chloride, which dissolves in the acidic solution. Eventually, the aluminum foil will be completely consumed in the reaction and will disappear. In conclusion, the observations made when placing aluminum foil in hydrochloric acid can be explained by the reaction between the two substances and factors that initially delay the observable effects, such as the presence of an oxide layer and the initial limited contact between the reactants. The vigorous bubbling and disappearance of the aluminum foil are the result of the production of hydrogen gas and the dissolution of aluminum chloride in the acidic solution, respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What volumes of \(\mathrm{H}_{2}(g)\) and \(\mathrm{O}_{2}(g)\) at STP are produced from the electrolysis of water by a current of 2.50 \(\mathrm{A}\) in 15.0 \(\mathrm{min}\) ?

A chemist wishes to determine the concentration of \(\mathrm{CrO}_{4}^{2-}\) electrochemically. A cell is constructed consisting of a saturated calomel electrode (SCE; see Exercise 111\()\) and a silver wire coated with \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) . The \(\mathscr{E}^{\circ}\) value for the following half-reaction is 0.446 \(\mathrm{V}\) relative to the standard hydrogen electrode: $$\mathrm{Ag}_{2} \mathrm{CrO}_{4}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Ag}+\mathrm{CrO}_{4}^{2-}$$ a. Calculate \(\mathscr{E}_{\text { cell } \text { and }} \Delta G\) at \(25^{\circ} \mathrm{C}\) for the cell reaction when \(\left[\mathrm{CrO}_{4}^{2-}\right]=1.00 \mathrm{mol} / \mathrm{L}\) . b. Write the Nernst equation for the cell. Assume that the SCE concentrations are constant. c. If the coated silver wire is placed in a solution (at \(25^{\circ} \mathrm{C} )\) in which \(\left[\mathrm{CrO}_{4}^{2-}\right]=1.00 \times 10^{-5} M,\) what is the expected cell potential? d. The measured cell potential at \(25^{\circ} \mathrm{C}\) is 0.504 \(\mathrm{V}\) when the coated wire is dipped into a solution of unknown \(\left[\mathrm{CrO}_{4}^{2-}\right] .\) What is \(\left[\mathrm{CrO}_{4}^{2-}\right]\) for this solution? e. Using data from this problem and from Table \(18.1,\) calculate the solubility product \(\left(K_{\mathrm{sp}}\right)\) for \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\).

The measurement of \(\mathrm{pH}\) using a glass electrode obeys the Nernst equation. The typical response of a pH meter at \(25.00^{\circ} \mathrm{C}\) is given by the equation $$\mathscr{E}_{\text { meas }}=\mathscr{E}_{\text { ref }}+0.05916 \mathrm{pH}$$ where \(\mathscr{E}_{\text { ref }}\) contains the potential of the reference electrode and all other potentials that arise in the cell that are not related to the hydrogen ion concentration. Assume that \(\mathscr{E}_{\mathrm{ref}}=0.250 \mathrm{V}\) and that \(\mathscr{E}_{\text { meas }}=0.480 \mathrm{V}\) a. What is the uncertainty in the values of \(\mathrm{pH}\) and \(\left[\mathrm{H}^{+}\right]\) if the nncertainty in the measured potential is \(+1 \mathrm{mV}\) \(( \pm 0.001 \mathrm{V}) ?\) b. To what precision must the potential be measured for the uncertainty in \(\mathrm{pH}\) to be \(\pm 0.02 \mathrm{pH}\) unit?

Sketch the galvanic cells based on the following overall reactions. Show the direction of electron flow, the direction of ion migration through the salt bridge, and identify the cathode and anode. Give the overall balanced equation. Assume that all concentrations are 1.0 \(M\) and that all partial pressures are 1.0 atm. a. \(\mathrm{IO}_{3}^{-}(a q)+\mathrm{Fe}^{2+}(a q) \Longrightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{I}_{2}(a q)\) b. \(\mathrm{Zn}(s)+\mathrm{Ag}^{+}(a q) \rightleftharpoons \mathrm{Zn}^{2+}(a q)+\mathrm{Ag}(s)\)

Consider only the species (at standard conditions) $$$\mathrm{Br}^{-}, \quad \mathrm{Br}_{2}, \quad \mathrm{H}^{+}, \quad \mathrm{H}_{2}, \quad \mathrm{La}^{3+}, \quad \mathrm{Ca}, \quad \mathrm{Cd}$$ in answering the following questions. Give reasons for your answers. a. Which is the strongest oxidizing agent? b. Which is the strongest reducing agent? c. Which species can be oxidized by \(\mathrm{MnO}_{4}^{-}\) in acid? d. Which species can be reduced by \(\mathrm{Zn}(s) ?\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free