Chapter 18: Problem 113
Consider the standard galvanic cell based on the following half-reactions: $$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}$$ $$\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}$$ The electrodes in this cell are \(A g(s)\) and \(C u(s) .\) Does the cell potential increase, decrease, or remain the same when the following changes occur to the standard cell? a. \(\operatorname{CuSO}_{4}(s)\) is added to the copper half-cell compartment (assume no volume change). b. \(\mathrm{NH}_{3}(a q)\) is added to the copper half-cell compartment. [Hint: \(\mathrm{Cu}^{2+}\) reacts with \(\mathrm{NH}_{3}\) to form \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) . ]\) c. \(\mathrm{NaCl}(s)\) is added to the silver half-cell compartment. [Hint: Ag' reacts with Cl- to form AgCl(s). ] d. Water is added to both half-cell compartments until the volume of solution is doubled. e. The silver electrode is replaced with a platinum electrode. $$\mathrm{Pt}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pt} \quad \mathscr{E}^{\circ}=1.19 \mathrm{V}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.