In the text, the equation
$$\Delta G=\Delta G^{\circ}+R T \ln (Q)$$
was derived for gaseous reactions where the quantities in \(Q\) were expressed
in units of pressure. We also can use units of mol/L for the quantities in
\(Q\)specifically for aqueous reactions. With this in mind, consider the
reaction
$$\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a
q)$$
for which \(K_{\mathrm{a}}=7.2 \times 10^{-4}\) at \(25^{\circ} \mathrm{C}\) .
Calculate \(\Delta G\) for the reaction under the following conditions at
\(25^{\circ} \mathrm{C} .\)
a. \([\mathrm{HF}]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=1.0
\mathrm{M}\)
b. \([\mathrm{HF}]=0.98
M,\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=2.7 \times 10^{-2}
M\)
c. \([\mathrm{HF}]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=1.0
\times 10^{-5} \mathrm{M}\)
d. \([\mathrm{HF}]=\left[\mathrm{F}^{-}\right]=0.27
M,\left[\mathrm{H}^{+}\right]=7.2 \times 10^{-4} M\)
e. \([\mathrm{HF}]=0.52 M,\left[\mathrm{F}^{-}\right]=0.67
M,\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}\)
Based on the calculated DG values, in what direction will the reaction shift
to reach equilibrium for each of the five sets of conditions?