Problem 113
Consider two perfectly insulated vessels. Vessel 1 initially contains an ice cube at \(0^{\circ} \mathrm{C}\) and water at \(0^{\circ} \mathrm{C}\) . Vessel 2 initially contains an ice cube at \(0^{\circ} \mathrm{C}\) and a saltwater solution at \(0^{\circ} \mathrm{C}\) . Consider the process \(\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)\) a. Determine the sign of \(\Delta S, \Delta S_{\text { sum }}\) and \(\Delta S_{\text { univ }}\) for the process in vessel 1 . b. Determine the sign of \(\Delta S, \Delta S_{\text { sum }},\) and \(\Delta S_{\text { univ }}\) for the process in vessel \(2 .\) (Hint: Think about the effect that a salt has on the freezing point of a solvent.)
Problem 114
Liquid water at \(25^{\circ} \mathrm{C}\) is introduced into an evacuated, insulated vessel. Identify the signs of the following thermodynamic functions for the process that occurs: \(\Delta H, \Delta S, \Delta T_{\text { water }} \Delta S_{\text { surr }}\) \(\Delta S_{\text { univ }}\)
Problem 117
Using the free energy profile for a simple one-step reaction, show that at equilibrium \(K=k_{f} / k_{\mathrm{r}},\) where \(k_{\mathrm{f}}\) and \(k_{\mathrm{r}}\) are the rate constants for the forward and reverse reactions. Hint: Use the relationship \(\Delta G^{\circ}=-R T \ln (K)\) and represent \(k_{\mathrm{f}}\) and \(k_{\mathrm{r}}\) using the Arrhenius equation \(\left(k=A e^{-E_{2} / R T}\right)\) b. Why is the following statement false? "A catalyst can increase the rate of a forward reaction but not the rate of the reverse reaction."
Problem 118
Consider the reaction $$\mathrm{H}_{2}(g)+\mathrm{B} \mathrm{r}_{2}(g) \rightleftharpoons 2 \mathrm{HBr}(g)$$ where \(\Delta H^{\circ}=-103.8 \mathrm{kJ} / \mathrm{mol}\) . In a particular experiment, equal moles of \(\mathrm{H}_{2}(g)\) at 1.00 \(\mathrm{atm}\) and \(\mathrm{Br}_{2}(g)\) at 1.00 atm were mixed in a \(1.00-\mathrm{L}\) flask at \(25^{\circ} \mathrm{C}\) and allowed to reach equilibrium. Then the molecules of \(\mathrm{H}_{2}\) at equilibrium were counted using a very sensitive technique, and \(1.10 \times 10^{13}\) molecules were found. For this reaction, calculate the values of \(K, \Delta G^{\circ},\) and \(\Delta S^{\circ} .\)
Problem 119
Consider the system $$\mathrm{A}(g) \rightleftharpoons \mathrm{B}(g)$$ at \(25^{\circ} \mathrm{C}\) a. Assuming that \(G_{\mathrm{A}}^{\circ}=8996 \mathrm{J} / \mathrm{mol}\) and \(G_{\mathrm{B}}^{\circ}=11,718 \mathrm{J} / \mathrm{mol},\) calculate the value of the equilibrium constant for this reaction. b. Calculate the equilibrium pressures that result if 1.00 mole of \(\mathrm{A}(g)\) at 1.00 atm and 1.00 mole of \(\mathrm{B}(g)\) at 1.00 atm are mixed at \(25^{\circ} \mathrm{C} .\) c. Show by calculations that \(\Delta G=0\) at equilibrium.
Problem 120
The equilibrium constant for a certain reaction decreases from 8.84 to \(3.25 \times 10^{-2}\) when the temperature increases from \(25^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) . Estimate the temperature where \(K=1.00\) for this reaction. Estimate the value of \(\Delta S^{\circ}\) for this reaction. (Hint: Manipulate the equation in Exercise 85.)
Problem 121
If wet silver carbonate is dried in a stream of hot air, the air must have a certain concentration level of carbon dioxide to prevent silver carbonate from decomposing by the reaction $$\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons \mathrm{Ag}_{2} \mathrm{O}(s)+\mathrm{CO}_{2}(g)$$ \(\Delta H^{\circ}\) for this reaction is 79.14 \(\mathrm{kJ} / \mathrm{mol}\) in the temperature range of 25 to \(125^{\circ} \mathrm{C}\) . Given that the partial pressure of carbon dioxide in equilibrium with pure solid silver carbonate is \(6.23 \times 10^{-3}\) torr at \(25^{\circ} \mathrm{C},\) calculate the partial pressure of \(\mathrm{CO}_{2}\) necessary to prevent decomposition of \(\mathrm{Ag}_{2} \mathrm{CO}_{3}\) at \(110 .^{\circ} \mathrm{C}\) (Hint: Manipulate the equation in Exercise 85.)
Problem 122
Carbon tetrachloride \(\left(\mathrm{CCl}_{4}\right)\) and benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) form ideal solutions. Consider an equimolar solution of \(\mathrm{CC}_{4}\) and \(\mathrm{C}_{6} \mathrm{H}_{6}\) at \(25^{\circ} \mathrm{C}\) . The vapor above the solution is collected and condensed. Using the following data, determine the composition in mole fraction of the condensed vapor.
Problem 124
You have a 1.00 -L sample of hot water \(\left(90.0^{\circ} \mathrm{C}\right)\) sitting open in a \(25.0^{\circ} \mathrm{C}\) room. Eventually the water cools to \(25.0^{\circ} \mathrm{C}\) while the temperature of the room remains unchanged. Calculate \(\Delta S_{\mathrm{sur}}\) for this process. Assume the density of water is 1.00 \(\mathrm{g} / \mathrm{cm}^{3}\) over this temperature range, and the heat capacity of water is constant over this temperature range and equal to 75.4 \(\mathrm{J} / \mathrm{K} \cdot\) mol.
Problem 125
Consider a weak acid, HX. If a \(0.10-M\) solution of \(\mathrm{HX}\) has a pH of 5.83 at \(25^{\circ} \mathrm{C},\) what is \(\Delta G^{\circ}\) for the acid's dissociation reaction at \(25^{\circ} \mathrm{C} ?\)