Chapter 16: Problem 2
Devise as many ways as you can to experimentally determine the \(K_{\mathrm{sp}}\) value of a solid. Explain why each of these would work.
Chapter 16: Problem 2
Devise as many ways as you can to experimentally determine the \(K_{\mathrm{sp}}\) value of a solid. Explain why each of these would work.
All the tools & learning materials you need for study success - in one app.
Get started for freeA solution is formed by mixing \(50.0 \mathrm{mL}\) of \(10.0 \mathrm{M}\) \(\mathrm{NaX}\) with \(50.0 \mathrm{mL}\) of \(2.0 \times 10^{-3} \mathrm{M} \mathrm{CuNO}_{3} .\) Assume that \(\mathrm{Cu}^{+}\) forms complex ions with \(\mathrm{X}^{-}\) as follows: $$\mathrm{Cu}^{+}(a q)+\mathrm{X}^{-}(a q) \rightleftharpoons \mathrm{CuX}(a q) \quad K_{1}=1.0 \times 10^{2}$$ $$\operatorname{CuX}(a q)+\mathrm{X}^{-}(a q) \rightleftharpoons \mathrm{CuX}_{2}^{-}(a q) \qquad K_{2}=1.0 \times 10^{4}$$ $$\operatorname{CuX}_{2}^{-}(a q)+\mathrm{X}^{-}(a q) \rightleftharpoons \mathrm{CuX}_{3}^{2-}(a q) \quad K_{3}=1.0 \times 10^{3}$$ with an overall reaction $$\mathrm{Cu}^{+}(a q)+3 \mathrm{X}^{-}(a q) \rightleftharpoons \mathrm{CuX}_{3}^{2-}(a q) \qquad K=1.0 \times 10^{9}$$ Calculate the following concentrations at equilibrium a. \(\mathrm{CuX}_{3}^{2-} \quad\) b. \(\mathrm{CuX}_{2}^{-} \quad\) c. \(\mathrm{Cu}^{+}\)
The concentration of \(\mathrm{Pb}^{2+}\) in a solution saturated with \(\mathrm{PbBr}_{2}(s)\) is \(2.14 \times 10^{-2} \mathrm{M} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{PbBr}_{2}.\)
Will a precipitate of \(\mathrm{Cd}(\mathrm{OH})_{2}\) form if \(1.0 \mathrm{mL}\) of \(1.0 \mathrm{M}\) \(\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}\) is added to \(1.0 \mathrm{L}\) of \(5.0 \mathrm{MNH}_{3} ?\) $$\mathrm{Cd}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K=1.0 \times 10^{7}$$ $$\mathrm{Cd}(\mathrm{OH})_{2}(s) \rightleftharpoons \mathrm{Cd}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \quad K_{\mathrm{sp}}=5.9 \times 10^{-15}$$
The solubility of \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\) in a \(0.20-M \mathrm{KIO}_{3}\) solution is \(4.4 \times 10^{-8} \mathrm{mol} / \mathrm{L}\) . Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}.\)
a. Calculate the molar solubility of \(\mathrm{AgBr}\) in pure water. \(K_{\mathrm{sp}}\) for \(\mathrm{AgBr}\) is \(5.0 \times 10^{-13}\) . b. Calculate the molar solubility of \(\mathrm{AgBr}\) in \(3.0M\) \(\mathrm{NH}_{3} .\) The overall formation constant for \(\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}+\) is \(1.7 \times 10^{7}\) that is, $$\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \longrightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}(a q) \quad K=1.7 \times 10^{7}$$ c. Compare the calculated solubilities from parts a and b. Explain any differences. d. What mass of \(\mathrm{AgBr}\) will dissolve in \(250.0 \mathrm{mL}\) of \(3.0 M\) \(\mathrm{NH}_{3}?\) e. What effect does adding \(\mathrm{HNO}_{3}\) have on the solubilities calculated in parts a and b?
What do you think about this solution?
We value your feedback to improve our textbook solutions.