Chapter 15: Problem 3
Mixing together solutions of acetic acid and sodium hydroxide can make a buffered solution. Explain. How does the amount of each solution added change the effectiveness of the buffer?
Chapter 15: Problem 3
Mixing together solutions of acetic acid and sodium hydroxide can make a buffered solution. Explain. How does the amount of each solution added change the effectiveness of the buffer?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe active ingredient in aspirin is acetylsalicylic acid. A 2.51 -g sample of acetylsalicylic acid required 27.36 \(\mathrm{mL}\) of 0.5106 \(\mathrm{M} \mathrm{daOH}\) for complete reaction. Addition of 13.68 \(\mathrm{mL}\) of 0.5106\(M \mathrm{HCl}\) to the flask containing the aspirin and the sodium hydroxide produced a mixture with pH \(=3.48 .\) Determine the molar mass of acetylsalicylic acid and its \(K_{2}\) value. State any assumptions you must make to reach your answer.
Which of the following can be classified as buffer solutions? $$ \begin{array}{l}{\text { a. } 0.25 M \mathrm{HBr}+0.25 \mathrm{M} \mathrm{HOBr}} \\ {\text { b. } 0.15 \mathrm{M} \mathrm{HClO}_{4}+0.20 \mathrm{M} \mathrm{RbOH}} \\ {\text { c. } 0.50 \mathrm{M} \mathrm{HOCl}+0.35 \mathrm{MKOCl}}\end{array} $$ $$ \begin{array}{l}{\text { d. } 0.70 M \mathrm{KOH}+0.70 \mathrm{M} \text { HONH_ }} \\ {\text { e. } 0.85 \mathrm{M} \mathrm{H}_{2} \mathrm{NNH}_{2}+0.60 M \mathrm{H}_{2} \mathrm{NNH}_{3} \mathrm{NO}_{3}}\end{array} $$
Th pH of blood is steady at a value of approximately 7.4 as a result of the following equilibrium reactions: $$ \mathrm{CO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q) \leftrightharpoons \mathrm{HCO}_{3}-(a q)+\mathrm{H}^{+}(a q) $$ The actual buffer system in blood is made up of \(\mathrm{H}_{2} \mathrm{CO}_{3}\) and \(\mathrm{HCO}_{3}\) - One way the body keeps the pH of blood at 7.4 is by regulating breathing. Under what blood ph conditions will the body increase breathing and under what blood pH conditions will the body decrease breathing? Explain.
A student titrates an unknown weak acid, HA, to a pale pink phenolphthalein end point with 25.0 \(\mathrm{mL}\) of 0.100\(M \mathrm{NaOH}\) . The student then adds 13.0 \(\mathrm{mL}\) of 0.100 \(\mathrm{M} \mathrm{HCl}\) . The pH of the resulting solution is \(4.70 .\) How is the value of \(\mathrm{p} K_{2}\) for the unknown acid related to 4.70\(?\)
Calculate the pH of a solution formed by mixing 100.0 \(\mathrm{mL}\) of 0.100 \(\mathrm{M}\) NaF and 100.0 \(\mathrm{mL}\) of 0.025 \(\mathrm{M} \mathrm{HCl} .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.