Chapter 15: Problem 13
A best buffer has about equal quantities of weak acid and conjugate base present as well as having a large concentration of each species present. Explain.
Chapter 15: Problem 13
A best buffer has about equal quantities of weak acid and conjugate base present as well as having a large concentration of each species present. Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the ph of each of the following solutions. $$ \begin{array}{l}{\text { a. } 0.100 M \text { propanoic acid }\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}, K_{2}=1.3 \times 10^{-5}\right)} \\ {\text { b. } 0.100 M \text { sodium propanoate }\left(\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)} \\ {\text { c. pure } \mathrm{H}_{2} \mathrm{O}}\end{array} $$ $$ \begin{array}{l}{\text { d. a mixture containing } 0.100 M \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \text { and } 0.100 \mathrm{M}} \\\ {\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}}\end{array} $$
Consider the titration of 100.0 \(\mathrm{mL}\) of 0.100 \(\mathrm{M} \mathrm{H}_{2} \mathrm{NNH}_{2}\) \(\left(K_{\mathrm{b}}=3.0 \times 10^{-6}\right)\) by 0.200\(M \mathrm{HNO}_{3}\) . Calculate the \(\mathrm{pH}\) of the resulting solution after the following volumes of \(\mathrm{HNO}_{3}\) have been added. $$ \begin{array}{ll}{\text { a. } 0.0 \mathrm{mL}} & {\text { d. } 40.0 \mathrm{mL}} \\ {\text { b. } 20.0 \mathrm{mL}} & {\text { e. } 50.0 \mathrm{mL}} \\ {\text { c. } 25.0 \mathrm{mL}} & {\text { f. } 100.0 \mathrm{mL}}\end{array} $$
Amino acids are the building blocks for all proteins in our bodies. A structure for the amino acid alanine is All amino acids have at least two functional groups with acidic or basic properties. In alanine, the carboxylic acid group has \(K_{\mathrm{a}}=4.5 \times 10^{-3}\) and the amino group has \(K_{\mathrm{b}}=7.4 \times 10^{-5} .\) Because of the two groups with acidic or basic properties, three different charged ions of alanine are possible when alanine is dissolved in water. Which of these ions would predominate in a solution with \(\left[\mathrm{H}^{+}\right]=1.0 M ?\) In a solution with \(\left[\mathrm{OH}^{-}\right]=1.0 \mathrm{M} ?\)
Consider the titration of 100.0 \(\mathrm{mL}\) of 0.200 \(\mathrm{M}\) acetic acid \(\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)\) by 0.100 \(\mathrm{M} \mathrm{KOH}\) . Calculate the \(\mathrm{pH}\) of the resulting solution after the following volumes of KOH have been added. $$ \begin{array}{ll}{\text { a. } 0.0 \mathrm{mL}} & {\text { d. } 150.0 \mathrm{mL}} \\ {\text { b. } 50.0 \mathrm{mL}} & {\text { e. } 200.0 \mathrm{mL}} \\ {\text { c. } 100.0 \mathrm{mL}} & {\text { f. } 250.0 \mathrm{mL}}\end{array} $$
Sketch two pH curves, one for the titration of a weak acid with a strong base and one for a strong acid with a strong base. How are they similar? How are they different? Account for the similarities and the differences
What do you think about this solution?
We value your feedback to improve our textbook solutions.