Chapter 15: Problem 122
A \(0.400-M\) solution of ammonia was titrated with hydrochloric acid to the equivalence point, where the total volume was 1.50 times the original volume. At what pH does the equivalence point occur?
Chapter 15: Problem 122
A \(0.400-M\) solution of ammonia was titrated with hydrochloric acid to the equivalence point, where the total volume was 1.50 times the original volume. At what pH does the equivalence point occur?
All the tools & learning materials you need for study success - in one app.
Get started for freeMixing together solutions of acetic acid and sodium hydroxide can make a buffered solution. Explain. How does the amount of each solution added change the effectiveness of the buffer?
A certain indicator HIn has a \(\mathrm{p} K_{\mathrm{a}}\) of 3.00 and a color change becomes visible when 7.00\(\%\) of the indicator has been converted to \(\mathrm{In}^{-}\) . At what pH is this color change visible?
Sketch the titration curves for a diprotic acid titrated by a strong base and a triprotic acid titrated by a strong base. List the major species present at various points in each curve. In each curve, label the halfway points to equivalence. How do you calculate the pH at these halfway points?
Sketch the titration curve for the titration of a generic weak base \(\mathrm{B}\) with a strong acid. The titration reaction is $$ \mathrm{B}+\mathrm{H}^{+} \rightleftharpoons \mathrm{BH}^{+} $$ On this curve, indicate the points that correspond to the following: a. the stoichiometric (equivalence) point b. the region with maximum buffering c. \(\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}\) d. \(\mathrm{pH}\) depends only on \([\mathrm{B}]\) e. \(\mathrm{pH}\) depends only on \(\left[\mathrm{BH}^{+}\right]\) f. \(\mathrm{pH}\) depends only on the amount of excess strong acid added
Consider the blood buffer system discussed in the Exercise \(96 .\) Patients with severe diarrhea can have an excessive loss of sodium bicarbonate (sodium hydrogen carbonate). How would this affect the \(\mathrm{pH}\) of blood? Explain. What would be the treatment of such a condition?
What do you think about this solution?
We value your feedback to improve our textbook solutions.