Problem 92
You make 1.00 \(\mathrm{L}\) of a buffered solution \((\mathrm{pH}=4.00)\) by mixing acetic acid and sodium acetate. You have 1.00\(M\) solutions of each component of the buffered solution. What volume of each solution do you mix to make such a buffered solution?
Problem 94
Amino acids are the building blocks for all proteins in our bodies. A structure for the amino acid alanine is All amino acids have at least two functional groups with acidic or basic properties. In alanine, the carboxylic acid group has \(K_{\mathrm{a}}=4.5 \times 10^{-3}\) and the amino group has \(K_{\mathrm{b}}=7.4 \times 10^{-5} .\) Because of the two groups with acidic or basic properties, three different charged ions of alanine are possible when alanine is dissolved in water. Which of these ions would predominate in a solution with \(\left[\mathrm{H}^{+}\right]=1.0 M ?\) In a solution with \(\left[\mathrm{OH}^{-}\right]=1.0 \mathrm{M} ?\)
Problem 95
Phosphate buffers are important in regulating the \(\mathrm{pH}\) of intra- cellular fluids at pH values generally between 7.1 and \(7.2 .\) a. What is the concentration ratio of \(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\) to \(\mathrm{HPO}_{4}^{2-}\) inintracellular fluid at \(\mathrm{pH}=7.15 ?\) $$ \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q) \rightleftharpoons \mathrm{HPO}_{4}^{2-}(a q)+\mathrm{H}^{+}(a q) \quad K_{\mathrm{a}}=6.2 \times 10^{-8} $$ b. Why is a buffer composed of \(\mathrm{H}_{3} \mathrm{PO}_{4}\) and \(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\) ineffective in buffering the pH of intracellular fluid? $$ \mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}^{+}(a q) \quad K_{2}=7.5 \times 10^{-3} $$
Problem 96
Th pH of blood is steady at a value of approximately 7.4 as a result of the following equilibrium reactions: $$ \mathrm{CO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q) \leftrightharpoons \mathrm{HCO}_{3}-(a q)+\mathrm{H}^{+}(a q) $$ The actual buffer system in blood is made up of \(\mathrm{H}_{2} \mathrm{CO}_{3}\) and \(\mathrm{HCO}_{3}\) - One way the body keeps the pH of blood at 7.4 is by regulating breathing. Under what blood ph conditions will the body increase breathing and under what blood pH conditions will the body decrease breathing? Explain.
Problem 97
Consider the blood buffer system discussed in the Exercise \(96 .\) Patients with severe diarrhea can have an excessive loss of sodium bicarbonate (sodium hydrogen carbonate). How would this affect the \(\mathrm{pH}\) of blood? Explain. What would be the treatment of such a condition?
Problem 101
Calculate the volume of \(1.50 \times 10^{-2} M \mathrm{NaOH}\) that must be added to 500.0 \(\mathrm{mL}\) of 0.200 \(\mathrm{M} \mathrm{HCl}\) to give a solution that has \(\mathrm{pH}=2.15 .\)
Problem 102
Repeat the procedure in Exercise \(67,\) but for the titration of 25.0 \(\mathrm{mL}\) of 0.100 \(\mathrm{M} \mathrm{HNO}_{3}\) with 0.100 \(\mathrm{M} \mathrm{NaOH} .\)
Problem 103
A certain acetic acid solution has \(\mathrm{pH}=2.68\) . Calculate the volume of 0.0975 \(\mathrm{M} \mathrm{KOH}\) required to reach the equivalence point in the titration of 25.0 \(\mathrm{mL}\) of the acetic acid solution.
Problem 104
A 0.210 -g sample of an acid (molar mass \(=192 \mathrm{g} / \mathrm{mol}\) ) is titrated with 30.5 \(\mathrm{mL}\) of 0.108\(M \mathrm{NaOH}\) to a phenolphthalein end point. Is the acid monoprotic, diprotic, or triprotic?
Problem 105
The active ingredient in aspirin is acetylsalicylic acid. A 2.51 -g sample of acetylsalicylic acid required 27.36 \(\mathrm{mL}\) of 0.5106 \(\mathrm{M} \mathrm{daOH}\) for complete reaction. Addition of 13.68 \(\mathrm{mL}\) of 0.5106\(M \mathrm{HCl}\) to the flask containing the aspirin and the sodium hydroxide produced a mixture with pH \(=3.48 .\) Determine the molar mass of acetylsalicylic acid and its \(K_{2}\) value. State any assumptions you must make to reach your answer.