Chapter 14: Problem 136
Will the following oxides give acidic, basic, or neutral solutions when dissolved in water? Write reactions to justify your answers. a. \(\mathrm{Li}_{2} \mathrm{O}\) b. \(\mathrm{CO}_{2}\) c. \(\mathrm{SrO}\)
Chapter 14: Problem 136
Will the following oxides give acidic, basic, or neutral solutions when dissolved in water? Write reactions to justify your answers. a. \(\mathrm{Li}_{2} \mathrm{O}\) b. \(\mathrm{CO}_{2}\) c. \(\mathrm{SrO}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeClassify each of the following as a strong acid, weak acid, strong base, or weak base in aqueous solution. a. \(\mathrm{HNO}_{2}\) b. HNO \(_{3}\) c. \(\mathrm{CH}_{3} \mathrm{NH}_{2}\) d. \(\mathrm{NaOH}\) e. \(\mathrm{NH}_{3}\) f. \(\mathrm{HF}\) g. \(\mathrm{HC}-\mathrm{OH}\) h. \(\mathrm{Ca}(\mathrm{OH})_{2}\) i. \(\mathrm{H}_{2} \mathrm{SO}_{4}\)
A typical aspirin tablet contains 325 mg acetylsalicylic acid \(\left(\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right) .\) Calculate the \(\mathrm{pH}\) of a solution that is prepared by dissolving two aspirin tablets in enough water to make one \(\operatorname{cup}(237 \mathrm{mL})\) of solution. Assume the aspirin tablets are pure acetylsalicylic acid, \(K_{\mathrm{a}}=3.3 \times 10^{-4}\) .
When determining the pH of a weak acid solution, sometimes the 5\(\%\) rule can be applied to simplify the math. At what \(K_{\mathrm{a}}\) values will a \(1.0-M\) solution of a weak acid follow the 5\(\%\) rule?
Calculate the mass of \(\mathrm{HONH}_{2}\) required to dissolve in enough water to make 250.0 \(\mathrm{mL}\) of solution having a pH of 10.00\(\left(K_{\mathrm{b}}\right.\) \(=1.1 \times 10^{-8} )\)
The pH of \(1.0 \times 10^{-8} M\) hydrochloric acid is not \(8.00 .\) The correct pH can be calculated by considering the relationship between the molarities of the three principal ions in the solution \(\left(\mathrm{H}^{+}, \mathrm{Cl}^{-}, \text { and } \mathrm{OH}^{-}\right) .\) These molarities can be calculated from algebraic equations that can be derived from the considerations given below. a. The solution is electrically neutral. b. The hydrochloric acid can be assumed to be 100\(\%\) ionized. c. The product of the molarities of the hydronium ions and the hydroxide ions must equal \(K_{w}\) Calculate the pH of a \(1.0 \times 10^{-8}-M\) HCl solution.
What do you think about this solution?
We value your feedback to improve our textbook solutions.