Chapter 14: Problem 135
Will the following oxides give acidic, basic, or neutral solutions when dissolved in water? Write reactions to justify your answers. a. \(\mathrm{CaO}\) b. \(\mathrm{SO}_{2}\) c. \(\mathrm{Cl}_{2} \mathrm{O}\)
Chapter 14: Problem 135
Will the following oxides give acidic, basic, or neutral solutions when dissolved in water? Write reactions to justify your answers. a. \(\mathrm{CaO}\) b. \(\mathrm{SO}_{2}\) c. \(\mathrm{Cl}_{2} \mathrm{O}\)
All the tools & learning materials you need for study success - in one app.
Get started for freePlace the species in each of the following groups in order of increasing acid strength. a. \(\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{S}, \mathrm{H}_{2} \mathrm{Se}\) (bond energies: \(\mathrm{H}-\mathrm{O}, 467 \mathrm{kJ} / \mathrm{mol}\) \(\mathrm{H}-\mathrm{S}, 363 \mathrm{kJ} / \mathrm{mol} ; \mathrm{H}-\mathrm{Se}, 276 \mathrm{kJ} / \mathrm{mol} )\) b. \(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{F}_{2} \mathrm{CHCO}_{2} \mathrm{H}, \mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}\) c. \(\mathrm{NH}_{4}^{+}, \mathrm{HONH}_{3}^{+}\) d. \(\mathrm{NH}_{4}^{+}, \mathrm{PH}_{4}^{+}\) (bond energies: \(\mathrm{N}-\mathrm{H}, 391 \mathrm{kJ} / \mathrm{mol} ; \mathrm{P}-\mathrm{H},\) 322 \(\mathrm{kJ} / \mathrm{mol} )\) Give reasons for the orders you chose.
Isocyanic acid \((\mathrm{HNCO})\) can be prepared by heating sodium cyanate in the presence of solid oxalic acid according to the equation $$ 2 \mathrm{NaOCN}(s)+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(s) \longrightarrow 2 \mathrm{HNCO}(l)+\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(s) $$ Upon isolating pure HNCO \((l),\) an aqueous solution of HNCO can be prepared by dissolving the liquid HNCO in water. What is the pH of a 100 -mL solution of HNCO prepared from the reaction of 10.0 g each of NaOCN and \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4},\) assuming all of the HNCO produced is dissolved in solution? \(\left(K_{\mathrm{a}} \text { of HNCO }\right.\) \(=1.2 \times 10^{-4} . )\)
A typical sample of vinegar has a pH of \(3.0 .\) Assuming that vinegar is only an aqueous solution of acetic acid \(\left(K_{\mathrm{a}}=1.8 \times\right.\) \(10^{-5}\) ), calculate the concentration of acetic acid in vinegar.
A solution of formic acid (HCOOH, \(K_{\mathrm{a}}=1.8 \times 10^{-4} )\) has a \(\mathrm{pH}\) of 2.70 . Calculate the initial concentration of formic acid in this solution.
Hemoglobin (abbreviated Hb) is a protein that is responsible for the transport of oxygen in the blood of mammals. Each hemoglobin molecule contains four iron atoms that are the binding sites for \(\mathrm{O}_{2}\) molecules. The oxygen binding is pH- dependent. The relevant equilibrium reaction is $$ \mathrm{HbH}_{4}^{4+}(a q)+4 O_{2}(g) \rightleftharpoons \mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}(a q)+4 \mathrm{H}^{+}(a q) $$ Use Le Châtelier's principle to answer the following. a. What form of hemoglobin, HbH \(_{4}^{4+}\) or \(\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4},\) is favored in the lungs? What form is favored in the cells? b. When a person hyperventilates, the concentration of \(\mathrm{CO}_{2}\) in the blood is decreased. How does this affect the oxygen-binding equilibrium? How does breathing into a paper bag help to counteract this effect? (See Exercise \(146 .\) ) c. When a person has suffered a cardiac arrest, injection of a sodium bicarbonate solution is given. Why is this necessary? (Hint: CO, blood levels increase during cardiac arrest.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.