Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The rate constant \((k)\) depends on which of the following (there may be more than one answer)? a. the concentration of the reactants b. the nature of the reactants c. the temperature d. the order of the reaction Explain.

Short Answer

Expert verified
The rate constant (k) depends on the nature of the reactants (option b) and the temperature (option c). The concentration of the reactants (option a) and the order of the reaction (option d) do not affect the rate constant.

Step by step solution

01

Option a: the concentration of the reactants

The rate constant does not depend on the concentration of the reactants. The rate constant best describes the inherent speed of a reaction, and while the overall reaction rate is affected by the concentration, the rate constant remains constant for a specific reaction at a specific temperature. So, this option is incorrect.
02

Option b: the nature of the reactants

The nature of the reactants plays a significant role in determining the rate constant. Different reactants have their own distinct reactivity depending on their molecular structure, bonding, and other factors. A reaction with more reactive species would have a higher rate constant. Therefore, this option is correct.
03

Option c: the temperature

Temperature affects the rate constant through the Arrhenius equation, which states that the rate constant is proportional to the exponential of the activation energy divided by the product of the gas constant and the temperature: \[k = A\exp\left(-\frac{E_a}{R}\cdot \frac{1}{T}\right)\] where \(A\) is the pre-exponential factor, \(E_a\) is the activation energy, \(R\) is the gas constant, and \(T\) is the temperature in Kelvin. As the temperature increases, the rate constant increases as well, and vice versa. Therefore, this option is correct.
04

Option d: the order of the reaction

The order of the reaction (n) indicates how the rate of the reaction depends on the concentration of the reactants: \[\text{rate} = k[\text{reactants}]^n\] The rate constant itself does not depend on the order of the reaction. It is simply a proportionality constant that links the concentration of the reactants to the rate of the reaction. Therefore, this option is incorrect. To summarize, the rate constant depends on the nature of the reactants (option b) and the temperature (option c).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A certain first-order reaction is 45.0\(\%\) complete in 65 s. What are the values of the rate constant and the half-life for this process?

For the reaction \(\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C},\) explain at least two ways in which the rate law could be zero order in chemical A.

Draw a rough sketch of the energy profile for each of the following cases: a. \(\Delta E=+10 \mathrm{kJ} / \mathrm{mol}, E_{\mathrm{a}}=25 \mathrm{kJ} / \mathrm{mol}\) b. \(\Delta E=-10 \mathrm{kJ} / \mathrm{mol}, E_{\mathrm{a}}=50 \mathrm{kJ} / \mathrm{mol}\) c. \(\Delta E=-50 \mathrm{kJ} / \mathrm{mol}, E_{\mathrm{a}}=50 \mathrm{kJ} / \mathrm{mol}\)

A reaction of the form $$ \mathrm{aA} \longrightarrow $$ gives a plot of \(\ln [\mathrm{A}]\) versus time (in seconds), which is a straight line with a slope of \(-7.35 \times 10^{-3} .\) Assuming \([\mathrm{A}]_{0}=\) \(0.0100 M,\) calculate the time (in seconds) required for the reaction to reach 22.9\(\%\) completion.

The decomposition of iodoethane in the gas phase proceeds according to the following equation: $$ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}(g) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}(g) $$ At \(660 . \mathrm{K}, k=7.2 \times 10^{-4} \mathrm{s}^{-1} ;\) at \(720 . \mathrm{K}, k=1.7 \times 10^{-2} \mathrm{s}^{-1}\) What is the value of the rate constant for this first-order decomposition at \(325^{\circ} \mathrm{C} ?\) If the initial pressure of iodoethane is 894 torr at \(245^{\circ} \mathrm{C},\) what is the pressure of iodoethane after three half-lives?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free