Chapter 12: Problem 21
Enzymes are kinetically important for many of the complex reactions necessary for plant and animal life to exist. However, only a tiny amount of any particular enzyme is required for these complex reactions to occur. Explain.
Chapter 12: Problem 21
Enzymes are kinetically important for many of the complex reactions necessary for plant and animal life to exist. However, only a tiny amount of any particular enzyme is required for these complex reactions to occur. Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeA certain substance, initially at 0.10\(M\) in solution, decomposes by second- order kinetics. If the rate constant for this process is 0.40 \(\mathrm{L} / \mathrm{mol} \cdot \min\) , how much time is required for the concentration to reach 0.020 \(\mathrm{M}\) ?
The decomposition of \(\mathrm{NO}_{2}(g)\) occurs by the following bimolecular elementary reaction: $$ 2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) $$ The rate constant at 273 \(\mathrm{K}\) is \(2.3 \times 10^{-12} \mathrm{L} / \mathrm{mol} \cdot \mathrm{s}\) , and the activation energy is 111 \(\mathrm{kJ} / \mathrm{mol}\) . How long will it take for the concentration of \(\mathrm{NO}_{2}(g)\) to decrease from an initial partial pressure of 2.5 \(\mathrm{atm}\) to 1.5 \(\mathrm{atm}\) at \(500 . \mathrm{K}\) ? Assume ideal gas behavior.
The combustion of carbohydrates and the combustion of fats are both exothermic processes, yet the combustion of carbohydrates is a faster process. How can this be?
The reaction $$ 0^{\circ} \mathrm{C}, $$ These relationships hold only if there is a very small amount of \(\mathrm{I}_{3}^{-}\) present. What is the rate law and the value of the rate constant? (Assume that rate \(=-\frac{\Delta\left[\mathrm{H}_{2} \mathrm{SeO}_{3}\right]}{\Delta t} )\)
The reaction $$ \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{OH}^{-} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Br}^{-} $$ in a certain solvent is first order with respect to \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\) and zero order with respect to \(\mathrm{OH}^{-} .\) In several experiments, the rate constant \(k\) was determined at different temperatures. A plot of \(\ln (k)\) versus 1\(/ T\) was constructed resulting in a straight line with a slope value of \(-1.10 \times 10^{4} \mathrm{K}\) and \(y\) -intercept of 33.5 . Assume \(k\) has units of \(\mathrm{s}^{-1}\) a. Determine the activation energy for this reaction. b. Determine the value of the frequency factor \(A\) . c. Calculate the value of \(k\) at \(25^{\circ} \mathrm{C}\) .
What do you think about this solution?
We value your feedback to improve our textbook solutions.