Chapter 12: Problem 2
Describe at least two experiments you could perform to determine a rate law.
Chapter 12: Problem 2
Describe at least two experiments you could perform to determine a rate law.
All the tools & learning materials you need for study success - in one app.
Get started for freeA certain substance, initially present at \(0.0800 M,\) decomposes by zero-order kinetics with a rate constant of \(2.50 \times 10^{-2} \mathrm{mol} / \mathrm{L}\) . s. Calculate the time (in seconds required for the system to reach a concentration of 0.0210\(M .\)
What are the units for each of the following if the concentrations are expressed in moles per liter and the time in seconds? a. rate of a chemical reaction b. rate constant for a zero-order rate law c. rate constant for a first-order rate law d. rate constant for a second-order rate law e. rate constant for a third-order rate law
A reaction of the form $$ \mathrm{aA} \longrightarrow $$ gives a plot of \(\ln [\mathrm{A}]\) versus time (in seconds), which is a straight line with a slope of \(-7.35 \times 10^{-3} .\) Assuming \([\mathrm{A}]_{0}=\) \(0.0100 M,\) calculate the time (in seconds) required for the reaction to reach 22.9\(\%\) completion.
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 \(\mathrm{kJ} / \mathrm{mol} .\) In the presence of a catalyst at \(37^{\circ} \mathrm{C}\) the rate constant for the reaction increases by a factor of \(2.50 \times 10^{3}\) as compared with the uncatalyzed reaction. Assuming the frequency factor \(A\) is the same for both the catalyzed and uncatalyzed reactions, calculate the activation energy for the catalyzed reaction.
Experiments during a recent summer on a number of fireflies (small beetles, Lampyridaes photinus) showed that the average interval between flashes of individual insects was 16.3 \(\mathrm{s}\) at \(21.0^{\circ} \mathrm{C}\) and 13.0 \(\mathrm{s}\) at \(27.8^{\circ} \mathrm{C}\) a. What is the apparent activation energy of the reaction that controls the flashing? b. What would be the average interval between flashes of an individual firefly at \(30.0^{\circ} \mathrm{C} ?\) c. Compare the observed intervals and the one you calculated in part b to the rule of thumb that the Celsius temperature is 54 minus twice the interval between flashes.
What do you think about this solution?
We value your feedback to improve our textbook solutions.