Chapter 12: Problem 19
The central idea of the collision model is that molecules must collide in order to react. Give two reasons why not all collisions of reactant molecules result in product formation.
Chapter 12: Problem 19
The central idea of the collision model is that molecules must collide in order to react. Give two reasons why not all collisions of reactant molecules result in product formation.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the gas phase, the production of phosgene from chlorine and carbon monoxide is assumed to proceed by the following mechanism: $$ \mathrm{Cl}_{2} \stackrel{k_{1}}{\rightleftharpoons_{k_{1}}} 2 \mathrm{Cl} $$ $$ \mathrm{Cl}+\mathrm{CO} \stackrel{k_{2}}{\leftrightharpoons_{k-2}} \mathrm{COCl} $$ $$ \mathrm{COCl}+\mathrm{Cl}_{2} \stackrel{k_{3}}{\longrightarrow} \mathrm{COCl}_{2}+\mathrm{Cl} $$ $$ 2 \mathrm{Cl} \stackrel{k}{\longrightarrow} \mathrm{Cl}_{2} $$ Overall reaction: \(\mathrm{CO}+\mathrm{Cl}_{2} \longrightarrow \mathrm{COCl}_{2}\) a. Write the rate law for this reaction. b. Which species are intermediates?
The activation energy for some reaction $$ \mathrm{X}_{2}(g)+\mathrm{Y}_{2}(g) \longrightarrow 2 \mathrm{XY}(g) $$ is 167 \(\mathrm{kJ} / \mathrm{mol}\) , and \(\Delta E\) for the reaction is \(+28 \mathrm{kJ} / \mathrm{mol}\) . What is the activation energy for the decomposition of XY?
Two isomers (A and B) of a given compound dimerize as follows: $$ \begin{array}{l}{2 \mathrm{A} \stackrel{k_{1}}{\longrightarrow} A_{2}} \\ {2 \mathrm{B} \stackrel{k_{2}}{\longrightarrow} \mathrm{B}_{2}}\end{array} $$ Both processes are known to be second order in reactant, and \(k_{1}\) is known to be 0.250 \(\mathrm{L} / \mathrm{mol} \cdot \mathrm{s}\) at \(25^{\circ} \mathrm{C}\) . In a particular experiment \(\mathrm{A}\) and \(\mathrm{B}\) were placed in separate containers at \(25^{\circ} \mathrm{C},\) where \([\mathrm{A}]_{0}=1.00 \times 10^{-2} M\) and \([\mathrm{B}]_{0}=2.50 \times 10^{-2} M\) It was found that after each reaction had progressed for \(3.00 \mathrm{min},[\mathrm{A}]=3.00[\mathrm{B}]\) . In this case the rate laws are defined as $$ \begin{array}{l}{\text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}=k_{1}[\mathrm{A}]^{2}} \\ {\text { Rate }=-\frac{\Delta[\mathrm{B}]}{\Delta t}=k_{2}[\mathrm{B}]^{2}}\end{array} $$ a. Calculate the concentration of \(\mathrm{A}_{2}\) after 3.00 \(\mathrm{min}\) . b. Calculate the value of \(k_{2}\) . c. Calculate the half-life for the experiment involving A.
The thiosulfate ion \(\left(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right)\) is oxidized by iodine as follows: $$ 2 \mathrm{S}_{2} \mathrm{O}_{3}^{2-}(a q)+\mathrm{I}_{2}(a q) \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}(a q)+2 \mathrm{I}^{-}(a q) $$ In a certain experiment, \(7.05 \times 10^{-3}\) mol/L of \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) is consumed in the first 11.0 seconds of the reaction. Calculate the rate of consumption of \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) . Calculate the rate of production of iodide ion.
The rate law of a reaction can only be determined from experiment. Two experimental procedures for determining rate laws were outlined in Chapter 12. What are the two procedures and how are they used to determine the rate laws?
What do you think about this solution?
We value your feedback to improve our textbook solutions.