Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The initial rate of a reaction doubles as the concentration of one of the reactants is quadrupled. What is the order of this reactant? If a reactant has a \(-1\) order, what happens to the initial rate when the concentration of that reactant increases by a factor of two?

Short Answer

Expert verified
The order of reactant A is 1, as the initial rate doubles when the concentration of the reactant quadruples. If a reactant has a -1 order, when the concentration of that reactant increases by a factor of two, the initial rate will be halved.

Step by step solution

01

Understand the rate law expression

The rate law expression relates the rate of reaction to the concentration of the reactants. It is given by: Rate \(= k[A]^m\) Where 'Rate' is the initial rate of the reaction, 'k' is the rate constant, \([A]\) is the concentration of reactant A, and 'm' is the order of reactant A.
02

Set up the given information and the rate law expressions

We are given that the initial rate doubles when the concentration of reactant A is quadrupled. Therefore, we can set up the following expressions: \(Rate_1 = k[A_1]^m\) \(Rate_2 = k[A_2]^m = 2Rate_1\) Where \([A_2]\) is four times the concentration of \([A_1]\): \([A_2] = 4[A_1]\)
03

Find the order of the reactant

Now, we can write the rate law expressions for the two cases and divide the second equation by the first to eliminate 'k': \(\dfrac{Rate_2}{Rate_1} = \dfrac{k[A_2]^m}{k[A_1]^m}\) \(\dfrac{2Rate_1}{Rate_1} = \dfrac{k(4[A_1])^m}{k[A_1]^m}\) \(2 = (4)^m\) To find 'm', we can take the logarithm of both sides: \(\log_4{2} = m\) \(m = 1\) The order of reactant A is 1.
04

Analyze the impact of a -1 order and increasing concentration by a factor of 2

Now, we need to determine what happens to the initial rate when the concentration of reactant A increases by a factor of 2 and the order is -1. Let's use the rate law expression: Rate \(= k[A]^m\) Here, \(m = -1\) and \([A'] = 2[A]\), where \([A']\) is the new concentration of reactant A. We can write the expression for the new rate: New Rate \(= k[A']^{-1}\) \(New Rate = k(2[A])^{-1}\) \(New Rate = k\dfrac{1}{2[A]}\) Since the rate is inversely proportional to the concentration, when the concentration of reactant A is doubled, the rate of the reaction will be halved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assuming that the mechanism for the hydrogenation of \(\mathrm{C}_{2} \mathrm{H}_{4}\) given in Section 12.7 is correct, would you predict that the product of the reaction of \(\mathrm{C}_{2} \mathrm{H}_{4}\) with \(\mathrm{D}_{2}\) would be \(\mathrm{CH}_{2} \mathrm{D}-\mathrm{CH}_{2} \mathrm{D}\) or \(\mathrm{CHD}_{2}-\mathrm{CH}_{3} ?\) How could the reaction of \(\mathrm{C}_{2} \mathrm{H}_{4}\) with \(\mathrm{D}_{2}\) be used to confirm the mechanism for the hydrogenation of \(\mathrm{C}_{2} \mathrm{H}_{4}\) given in Section 12.7\(?\)

Draw a rough sketch of the energy profile for each of the following cases: a. \(\Delta E=+10 \mathrm{kJ} / \mathrm{mol}, E_{\mathrm{a}}=25 \mathrm{kJ} / \mathrm{mol}\) b. \(\Delta E=-10 \mathrm{kJ} / \mathrm{mol}, E_{\mathrm{a}}=50 \mathrm{kJ} / \mathrm{mol}\) c. \(\Delta E=-50 \mathrm{kJ} / \mathrm{mol}, E_{\mathrm{a}}=50 \mathrm{kJ} / \mathrm{mol}\)

At \(40^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}_{2}(a q)\) will decompose according to the following reaction: $$ 2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(\mathrm{~g}) $$ The following data were collected for the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) at various times. $$ \begin{array}{|cc|} \hline \begin{array}{c} \text { Time } \\ (\mathbf{s}) \end{array} & \begin{array}{c} {\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]} \\ (\mathrm{mol} / \mathrm{L}) \end{array} \\ \hline 0 & 1.000 \\ \hline 2.16 \times 10^{4} & 0.500 \\ \hline 4.32 \times 10^{4} & 0.250 \\ \hline \end{array} $$ a. Calculate the average rate of decomposition of \(\mathrm{H}_{2} \mathrm{O}_{2}\) between 0 and \(2.16 \times 10^{4} \mathrm{~s}\). Use this rate to calculate the average rate of production of \(\mathrm{O}_{2}(g)\) over the same time period. b. What are these rates for the time period \(2.16 \times 10^{4} \mathrm{~s}\) to \(4.32 \times 10^{4} \mathrm{~s} ?\)

A certain reaction has the following general form: $$ \mathrm{aA} \longrightarrow \mathrm{bB} $$ At a particular temperature and \([\mathrm{A}]_{0}=2.80 \times 10^{-3} M,\) con- centration versus time data were collected for this reaction, and a plot of 1\(/[\mathrm{A}]\) versus time resulted in a straight line with a slope value of \(+3.60 \times 10^{-2} \mathrm{L} / \mathrm{mol} \cdot \mathrm{s}\) . a. Determine the rate law, the integrated rate law, and the value of the rate constant for this reaction. b. Calculate the half-life for this reaction. c. How much time is required for the concentration of A to decrease to \(7.00 \times 10^{-4} M ?\)

The reaction $$ \mathrm{A} \longrightarrow \mathrm{B}+\mathrm{C} $$ is known to be zero order in A and to have a rate constant of \(5.0 \times 10^{-2} \mathrm{mol} / \mathrm{L} \cdot \mathrm{s}\) at \(25^{\circ} \mathrm{C}\) . An experiment was run at \(25^{\circ} \mathrm{C}\) where \([\mathrm{A}]_{0}=1.0 \times 10^{-3} \mathrm{M} .\) a. Write the integrated rate law for this reaction. b. Calculate the half-life for the reaction. c. Calculate the concentration of \(\mathrm{B}\) after \(5.0 \times 10^{-3} \mathrm{s}\) has elapsed assuming \([\mathrm{B}]_{0}=0\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free