Chapter 12: Problem 15
Define what is meant by unimolecular and bimolecular steps. Why are termolecular steps infrequently seen in chemical reactions?
Chapter 12: Problem 15
Define what is meant by unimolecular and bimolecular steps. Why are termolecular steps infrequently seen in chemical reactions?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the hypothetical reaction $$ \mathrm{A}+\mathrm{B}+2 \mathrm{C} \longrightarrow 2 \mathrm{D}+3 \mathrm{E} $$ where the rate law is $$ \text {Rate} =-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{A}][\mathrm{B}]^{2} $$ An experiment is carried out where \([\mathrm{A}]_{0}=1.0 \times 10^{-2} M\) \([\mathrm{B}]_{0}=3.0 M,\) and \([\mathrm{C}]_{0}=2.0 M .\) The reaction is started, and after 8.0 seconds, the concentration of \(\mathrm{A}\) is \(3.8 \times 10^{-3} \mathrm{M}\) a. Calculate the value of k for this reaction. b. Calculate the half-life for this experiment. c. Calculate the concentration of A after 13.0 seconds. d. Calculate the concentration of C after 13.0 seconds.
The decomposition of \(\mathrm{NO}_{2}(g)\) occurs by the following bimolecular elementary reaction: $$ 2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) $$ The rate constant at 273 \(\mathrm{K}\) is \(2.3 \times 10^{-12} \mathrm{L} / \mathrm{mol} \cdot \mathrm{s}\) , and the activation energy is 111 \(\mathrm{kJ} / \mathrm{mol}\) . How long will it take for the concentration of \(\mathrm{NO}_{2}(g)\) to decrease from an initial partial pressure of 2.5 \(\mathrm{atm}\) to 1.5 \(\mathrm{atm}\) at \(500 . \mathrm{K}\) ? Assume ideal gas behavior.
A certain reaction has the following general form: $$ \mathrm{aA} \longrightarrow \mathrm{bB} $$ At a particular temperature and \([\mathrm{A}]_{0}=2.80 \times 10^{-3} M,\) con- centration versus time data were collected for this reaction, and a plot of 1\(/[\mathrm{A}]\) versus time resulted in a straight line with a slope value of \(+3.60 \times 10^{-2} \mathrm{L} / \mathrm{mol} \cdot \mathrm{s}\) . a. Determine the rate law, the integrated rate law, and the value of the rate constant for this reaction. b. Calculate the half-life for this reaction. c. How much time is required for the concentration of A to decrease to \(7.00 \times 10^{-4} M ?\)
How does temperature affect k, the rate constant? Explain.
A reaction of the form $$ \mathrm{aA} \longrightarrow $$ gives a plot of \(\ln [\mathrm{A}]\) versus time (in seconds), which is a straight line with a slope of \(-7.35 \times 10^{-3} .\) Assuming \([\mathrm{A}]_{0}=\) \(0.0100 M,\) calculate the time (in seconds) required for the reaction to reach 22.9\(\%\) completion.
What do you think about this solution?
We value your feedback to improve our textbook solutions.