Chapter 12: Problem 112
Two isomers (A and B) of a given compound dimerize as follows: $$ \begin{array}{l}{2 \mathrm{A} \stackrel{k_{1}}{\longrightarrow} A_{2}} \\ {2 \mathrm{B} \stackrel{k_{2}}{\longrightarrow} \mathrm{B}_{2}}\end{array} $$ Both processes are known to be second order in reactant, and \(k_{1}\) is known to be 0.250 \(\mathrm{L} / \mathrm{mol} \cdot \mathrm{s}\) at \(25^{\circ} \mathrm{C}\) . In a particular experiment \(\mathrm{A}\) and \(\mathrm{B}\) were placed in separate containers at \(25^{\circ} \mathrm{C},\) where \([\mathrm{A}]_{0}=1.00 \times 10^{-2} M\) and \([\mathrm{B}]_{0}=2.50 \times 10^{-2} M\) It was found that after each reaction had progressed for \(3.00 \mathrm{min},[\mathrm{A}]=3.00[\mathrm{B}]\) . In this case the rate laws are defined as $$ \begin{array}{l}{\text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}=k_{1}[\mathrm{A}]^{2}} \\ {\text { Rate }=-\frac{\Delta[\mathrm{B}]}{\Delta t}=k_{2}[\mathrm{B}]^{2}}\end{array} $$ a. Calculate the concentration of \(\mathrm{A}_{2}\) after 3.00 \(\mathrm{min}\) . b. Calculate the value of \(k_{2}\) . c. Calculate the half-life for the experiment involving A.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.