Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Is molality or molarity dependent on temperature? Explain your answer. Why is molality, and not molarity, used in the equations describing freezing-point depression and boiling-point elevation?

Short Answer

Expert verified
Molality is independent of temperature, as it depends on the mass of solvent, while molarity is dependent on temperature, as it depends on the volume of the solution which varies with temperature. Molality is used in equations describing freezing-point depression and boiling-point elevation because it provides an accurate ratio of solute-to-solvent particles that remains constant despite temperature changes, making it suitable for describing colligative properties.

Step by step solution

01

1. Define molality and molarity

Molality (m) is defined as the number of moles of solute (particle) per kilogram of solvent, with the equation: \(m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}}\). Molarity (M) is defined as the number of moles of solute per liter of solution, with the equation: \(M = \frac{\text{moles of solute}}{\text{volume of solution (L)}}\).
02

2. Molality and temperature

Since molality depends only on the mass of solvent, it remains constant with the changes in temperature, as mass does not change with temperature. Therefore, molality is independent of temperature.
03

3. Molarity and temperature

Molarity depends on the volume of the solution, which can change with temperature since the volume varies with temperature due to thermal expansion or contraction. Thus, molarity is dependent on temperature.
04

4. Focus on molality in colligative properties

Colligative properties are physical properties of solutions that depend on the ratio of solute particles' concentration to the solvent particles' concentration, such as freezing-point depression and boiling-point elevation. As molality is independent of temperature and gives an accurate ratio of solute to solvent particles, it is preferred over molarity in equations describing freezing-point depression and boiling-point elevation.
05

5. Conclusion

Molality is independent of temperature, while molarity is dependent on temperature. Molality is the preferred parameter for describing colligative properties like freezing-point depression and boiling-point elevation, as it offers a consistent measurement of solute-to-solvent concentration despite temperature changes.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Creatinine, \(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{N}_{3} \mathrm{O}\) , is a by-product of muscle metabolism, and creatinine levels in the body are known to be a fairly reliable indicator of kidney function. The normal level of creatinine in the blood for adults is approximately 1.0 \(\mathrm{mg}\) per deciliter \((\mathrm{dL})\) of blood. If the density of blood is 1.025 \(\mathrm{g} / \mathrm{mL}\) , calculate the molality of a normal creatinine level in a \(10.0-\) \(\mathrm{mL}\) blood sample. What is the osmotic pressure of this solution at \(25.0^{\circ} \mathrm{C} ?\)

In flushing and cleaning columns used in liquid chromatography to remove adsorbed contaminants, a series of solvents is used. Hexane \(\left(\mathrm{C}_{6} \mathrm{H}_{14}\right),\) chloroform \(\left(\mathrm{CHCl}_{3}\right),\) methanol \(\left(\mathrm{CH}_{3} \mathrm{OH}\right),\) and water are passed through the column in that order. Rationalize the order in terms of intermolecular forces and the mutual solubility (miscibility) of the solvents.

Plants that thrive in salt water must have internal solutions (inside the plant cells) that are isotonic with (have the same osmotic pressure as) the surrounding solution. A leaf of a saltwater plant is able to thrive in an aqueous salt solution (at \(25^{\circ} \mathrm{C} )\) that has a freezing point equal to \(-0.621^{\circ} \mathrm{C} .\) You would like to use this information to calculate the osmotic pressure of the solution in the cell. a. In order to use the freezing-point depression to calculate osmotic pressure, what assumption must you make (in addition to ideal behavior of the solutions, which we will assume)? b. Under what conditions is the assumption (in part a) reasonable? c. Solve for the osmotic pressure (at \(25^{\circ} \mathrm{C} )\) of the solution in the plant cell. d. The plant leaf is placed in an aqueous salt solution (at \(25^{\circ} \mathrm{C}\) ) that has a boiling point of \(102.0^{\circ} \mathrm{C} .\) What will happen to the plant cells in the leaf?

For each of the following pairs, predict which substance is more soluble in water. a. \(\mathrm{CH}_{3} \mathrm{NH}_{2}\) or \(\mathrm{NH}_{3}\) b. \(\mathrm{CH}_{3} \mathrm{CN}\) or \(\mathrm{CH}_{3} \mathrm{OCH}_{3}\) c. \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\) or \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\) d. \(\mathrm{CH}_{3} \mathrm{OH}\) or \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\) e. \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}\) or \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OH}\) f. \(\mathrm{CH}_{3} \mathrm{OCH}_{3}\) or \(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\)

Calculate the solubility of \(\mathrm{O}_{2}\) in water at a partial pressure of \(\mathrm{O}_{2}\) of 120 torr at \(25^{\circ} \mathrm{C}\) . The Henry's law constant for \(\mathrm{O}_{2}\) is \(1.3 \times 10^{-3} \mathrm{mol} / \mathrm{L} \cdot\) atm for Henry's law in the form \(C=k P\) where \(C\) is the gas concentration \((\mathrm{mol} / \mathrm{L})\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free