Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Explain the terms isotonic solution, crenation, and hemolysis.

Short Answer

Expert verified
An isotonic solution has an equal concentration of solutes inside and outside the cell, maintaining the cell's shape and volume. Crenation occurs when a cell is placed in a hypertonic solution, causing water to leave the cell, which in turn leads to shrinkage and an irregular appearance. Hemolysis refers to the rupture of red blood cells in a hypotonic solution, where water enters the cells, causing them to swell and burst, leading to potential health complications.

Step by step solution

01

1. Isotonic Solution

An isotonic solution is a solution in which the concentration of solutes is equal both inside and outside a cell. When a cell is placed in an isotonic solution, there is no net movement of water across the cell membrane, which means the cell maintains its shape and volume. In a biological context, this is important because it ensures that cells do not swell or shrink, thus maintaining their function and structure.
02

2. Crenation

Crenation refers to the shrinkage of a cell when it is placed in a hypertonic solution, which has a higher concentration of solutes outside the cell compared to inside. In this situation, water moves out of the cell by osmosis, causing the cell membrane to pull away from the cell wall, and leading to the cell's irregular and shrunken appearance. This process can be damaging to the cell's function and may lead to cell death if not reversed promptly.
03

3. Hemolysis

Hemolysis is the process where red blood cells (RBCs) rupture and release their contents (hemoglobin) into the surrounding fluid, typically as a result of being in a hypotonic solution. A hypotonic solution has a lower concentration of solutes outside the cell compared to inside, causing water to move into the cell by osmosis. As water enters the RBCs, they swell and eventually burst, a process known as hemolysis. Hemolysis can have severe consequences in a biological context, as it can lead to anemia, organ damage, and other health complications.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An extremely important application of dialysis is the use of artificial kidney machines to purify blood. Explain how dialysis can be used to purify blood.

Write equations showing the ions present after the following strong electrolytes are dissolved in water. a. \(\mathrm{HNO}_{3}\) b. \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) c. \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\) d. \(\mathrm{SrBr}_{2}\) e. \(\mathrm{KClO}_{4}\) f. \(\mathrm{NH}_{4} \mathrm{Br}\) g. \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) h. \(\mathrm{CuSO}_{4}\) i. NaOH

At a certain temperature, the vapor pressure of pure benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) is 0.930 \(\mathrm{atm} .\) A solution was prepared by dissolving 10.0 \(\mathrm{g}\) of a nondissociating, nonvolatile solute in 78.11 \(\mathrm{g}\) of benzene at that temperature. The vapor pressure of the solution was found to be 0.900 \(\mathrm{atm}\) . Assuming the solution behaves ideally, determine the molar mass of the solute.

n lab you need to prepare at least 100 mL of each of the following solutions. Explain how you would proceed using the given information. a. 2.0 \(\mathrm{mKCl}\) in water (density of \(\mathrm{H}_{2} \mathrm{O}=1.00 \mathrm{g} / \mathrm{cm}^{3} )\) b. 15\(\% \mathrm{NaOH}\) by mass in water \(\left(d=1.00 \mathrm{g} / \mathrm{cm}^{3}\right)\) c. 25\(\% \mathrm{NaOH}\) by mass in \(\mathrm{CH}_{3} \mathrm{OH}\left(d=0.79 \mathrm{g} / \mathrm{cm}^{3}\right)\) d. 0.10 mole fraction of \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) in water \(\left(d=1.00 \mathrm{g} / \mathrm{cm}^{3}\right)\)

Plants that thrive in salt water must have internal solutions (inside the plant cells) that are isotonic with (have the same osmotic pressure as) the surrounding solution. A leaf of a saltwater plant is able to thrive in an aqueous salt solution (at \(25^{\circ} \mathrm{C} )\) that has a freezing point equal to \(-0.621^{\circ} \mathrm{C} .\) You would like to use this information to calculate the osmotic pressure of the solution in the cell. a. In order to use the freezing-point depression to calculate osmotic pressure, what assumption must you make (in addition to ideal behavior of the solutions, which we will assume)? b. Under what conditions is the assumption (in part a) reasonable? c. Solve for the osmotic pressure (at \(25^{\circ} \mathrm{C} )\) of the solution in the plant cell. d. The plant leaf is placed in an aqueous salt solution (at \(25^{\circ} \mathrm{C}\) ) that has a boiling point of \(102.0^{\circ} \mathrm{C} .\) What will happen to the plant cells in the leaf?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free