Chapter 11: Problem 33
Explain the terms isotonic solution, crenation, and hemolysis.
Chapter 11: Problem 33
Explain the terms isotonic solution, crenation, and hemolysis.
All the tools & learning materials you need for study success - in one app.
Get started for freeAn extremely important application of dialysis is the use of artificial kidney machines to purify blood. Explain how dialysis can be used to purify blood.
Write equations showing the ions present after the following strong electrolytes are dissolved in water. a. \(\mathrm{HNO}_{3}\) b. \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) c. \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\) d. \(\mathrm{SrBr}_{2}\) e. \(\mathrm{KClO}_{4}\) f. \(\mathrm{NH}_{4} \mathrm{Br}\) g. \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) h. \(\mathrm{CuSO}_{4}\) i. NaOH
At a certain temperature, the vapor pressure of pure benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) is 0.930 \(\mathrm{atm} .\) A solution was prepared by dissolving 10.0 \(\mathrm{g}\) of a nondissociating, nonvolatile solute in 78.11 \(\mathrm{g}\) of benzene at that temperature. The vapor pressure of the solution was found to be 0.900 \(\mathrm{atm}\) . Assuming the solution behaves ideally, determine the molar mass of the solute.
n lab you need to prepare at least 100 mL of each of the following solutions. Explain how you would proceed using the given information. a. 2.0 \(\mathrm{mKCl}\) in water (density of \(\mathrm{H}_{2} \mathrm{O}=1.00 \mathrm{g} / \mathrm{cm}^{3} )\) b. 15\(\% \mathrm{NaOH}\) by mass in water \(\left(d=1.00 \mathrm{g} / \mathrm{cm}^{3}\right)\) c. 25\(\% \mathrm{NaOH}\) by mass in \(\mathrm{CH}_{3} \mathrm{OH}\left(d=0.79 \mathrm{g} / \mathrm{cm}^{3}\right)\) d. 0.10 mole fraction of \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) in water \(\left(d=1.00 \mathrm{g} / \mathrm{cm}^{3}\right)\)
Plants that thrive in salt water must have internal solutions (inside the plant cells) that are isotonic with (have the same osmotic pressure as) the surrounding solution. A leaf of a saltwater plant is able to thrive in an aqueous salt solution (at \(25^{\circ} \mathrm{C} )\) that has a freezing point equal to \(-0.621^{\circ} \mathrm{C} .\) You would like to use this information to calculate the osmotic pressure of the solution in the cell. a. In order to use the freezing-point depression to calculate osmotic pressure, what assumption must you make (in addition to ideal behavior of the solutions, which we will assume)? b. Under what conditions is the assumption (in part a) reasonable? c. Solve for the osmotic pressure (at \(25^{\circ} \mathrm{C} )\) of the solution in the plant cell. d. The plant leaf is placed in an aqueous salt solution (at \(25^{\circ} \mathrm{C}\) ) that has a boiling point of \(102.0^{\circ} \mathrm{C} .\) What will happen to the plant cells in the leaf?
What do you think about this solution?
We value your feedback to improve our textbook solutions.