Chapter 11: Problem 139
In a coffee-cup calorimeter, 1.60 \(\mathrm{g} \mathrm{NH}_{4} \mathrm{NO}_{3}\) was mixed with 75.0 \(\mathrm{g}\) water at an initial temperature \(25.00^{\circ} \mathrm{C}\) . After dissolution of the salt, the final temperature of the calorimeter contents was \(23.34^{\circ} \mathrm{C}\) . a. Assuming the solution has a heat capacity of 4.18 \(\mathrm{J} / \mathrm{g}\) \(^{\circ} \mathrm{C},\) and assuming no heat loss to the calorimeter, calculate the enthalpy of solution \(\left(\Delta H_{\mathrm{soln}}\right)\) for the dissolution of \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) in units of \(\mathrm{kJ} / \mathrm{mol} .\) b. If the enthalpy of hydration for \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) is \(-630 . \mathrm{kJ} / \mathrm{mol}\) calculate the lattice energy of \(\mathrm{NH}_{4} \mathrm{NO}_{3} .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.