Chapter 11: Problem 10
Consider a beaker of salt water sitting open in a room. Over time, does the vapor pressure increase, decrease, or stay the same? Explain.
Chapter 11: Problem 10
Consider a beaker of salt water sitting open in a room. Over time, does the vapor pressure increase, decrease, or stay the same? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeHow does \(\Delta H_{\mathrm{soln}}\) relate to deviations from Raoult’s law? Explain.
What stabilizes a colloidal suspension? Explain why adding heat or adding an electrolyte can cause the suspended particles to settle out
Plants that thrive in salt water must have internal solutions (inside the plant cells) that are isotonic with (have the same osmotic pressure as) the surrounding solution. A leaf of a saltwater plant is able to thrive in an aqueous salt solution (at \(25^{\circ} \mathrm{C} )\) that has a freezing point equal to \(-0.621^{\circ} \mathrm{C} .\) You would like to use this information to calculate the osmotic pressure of the solution in the cell. a. In order to use the freezing-point depression to calculate osmotic pressure, what assumption must you make (in addition to ideal behavior of the solutions, which we will assume)? b. Under what conditions is the assumption (in part a) reasonable? c. Solve for the osmotic pressure (at \(25^{\circ} \mathrm{C} )\) of the solution in the plant cell. d. The plant leaf is placed in an aqueous salt solution (at \(25^{\circ} \mathrm{C}\) ) that has a boiling point of \(102.0^{\circ} \mathrm{C} .\) What will happen to the plant cells in the leaf?
The solubility of nitrogen in water is \(8.21 \times 10^{-4} \mathrm{mol} / \mathrm{L}\) at \(0^{\circ} \mathrm{C}\) when the \(\mathrm{N}_{2}\) pressure above water is 0.790 \(\mathrm{atm}\) . Calculate the Henry's law constant for \(\mathrm{N}_{2}\) in units of \(\mathrm{mol} / \mathrm{L} \cdot\) atm for Henry's law in the form \(C=k P,\) where \(C\) is the gas concentration in mol/L. Calculate the solubility of \(\mathrm{N}_{2}\) in water when the partial pressure of nitrogen above water is 1.10 atm at \(0^{\circ} \mathrm{C} .\)
a. Use the following data to calculate the enthalpy of hydration for calcium chloride and calcium iodide. $$\begin{array}{lll}{\mathrm{CaCl}_{2}(s)} & {-2247 \mathrm{k} / \mathrm{mol}} & {-46 \mathrm{kJ} / \mathrm{mol}} \\ {\mathrm{Cal}_{2}(s)} & {-2059 \mathrm{k} / \mathrm{mol}} & {-104 \mathrm{kJ} / \mathrm{mol}}\end{array}$$ b. Based on your answers to part a, which ion, \(\mathrm{Cl}^{-}\) or \(\mathrm{I}^{-},\) is more strongly attracted to water?
What do you think about this solution?
We value your feedback to improve our textbook solutions.