Chapter 13: Problem 475
\(\mathrm{N}_{2} \mathrm{O}_{5}\) decomposes according to the following equation: \(\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+(1 / 2) \mathrm{O}_{2}\). The rate expression \(=\) \(\left\\{-\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]\right\\} / \mathrm{dt}=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]\). The following mechanism has been proposed: \(\mathrm{N}_{2} \mathrm{O}_{5} \mathrm{k} \rightleftarrows \mathrm{NO}_{2}+\mathrm{NO}_{3}\) $$ \begin{aligned} &\mathrm{NO}_{2}+\mathrm{NO}_{3} \mathrm{k}_{1} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}+\mathrm{NO} \\ &\mathrm{NO}+\mathrm{NO}_{3} \mathrm{k}_{2} \rightarrow 2 \mathrm{NO}_{2} \end{aligned} $$ Show the rate of \(\mathrm{O}_{2}\) formation is directly proportional to \(\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.