Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Consider the following reaction at

N2(g)+3F2(g)2NF3

An equilibrium mixture contains the following partial pressures

PN2=0.021atm,PF2=0.063atm,andPNF3=0.48atm.

Calculate ΔGofor the reaction at 800 K.

Short Answer

Expert verified

The standard free energy change for the reaction is -71 kJ/mol

Step by step solution

01

Definition of standard free energy change

The amount of energy released in the conversion of reactants to products under standard conditions is defined as the standard free energy change.

02

Calculation of  ΔGo

The reaction is N2(g)+3F2(g)2NF3(g)

ΔGR0=RTln[PNF3]2[PN2][PF2]3           =-0.008314 kJ/mol-K×800 K×ln[0.48]2[0.021][0.063]3          =71 kJ/mol

The standard free energy change is-71 kJ/mol.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

High temperatures are favourable to a reaction kinetically but may be unfavourable to a reaction thermodynamically. Explain.

Discuss the relationship between wmaxand the magnitude and sign of the free energy change for a reaction. Also discusswmax for real processes.

The enthalpy of vaporization of chloroform (CHCI3) is 31.4KJ/moleat its boiling point (61.7°C).DetermineΔSsys,ΔSsurr,andΔSuniv when 1.00 mole of chloroform isvaporized at 61.7°C and 1.00 atm.

Many biochemical reactions that occur in cells requirerelatively high concentrations of potassium ion (K+ ).The concentration of K+in muscle cells is about 0.15 M. The concentration of K+in blood plasma is about 0.0050 M. The high internal concentration in cells is maintained by pumping K+from the plasma. How much work must be done to transport 1.0 mole of K+from the blood to the inside of a muscle cell at 37°C (normal body temperature)? When 1.0 mole of K+is transferred from blood to the cells, do any other ions have to be transported? Why or why not? Much of the ATP (see Exercise 84) formed from metabolic processes is used to provide energy for transport of cellular components. How much ATP must be hydrolyzed to provide the energy for the transport of 1.0 mole of K+?

Impure nickel, refined by smelting sulfide ores in a blast furnace, can be converted into metal from 99.90% to 99.99% purity by the Mond process. The primary reaction involved in the Mond process is
Ni(s)+4CO(g)Ni(CO)4(g)
a. Without referring to Appendix 4, predict the sign ofS° for the preceding reaction. Explain.
b. The spontaneity of the preceding reaction is temperature-dependent. Predict the sign of SSUIT for this reaction. Explain.
c. For, Ni(CO)4(g),Ht°=-607kj/moland S°=417J-1mol-1 at 298 K. Using these values and data in Appendix 4, calculate H°andS° for the preceding reaction.
d. Calculate the temperature at which G°=0(K=1) for the preceding reaction, assuming that H°andS° do not depend on temperature.
e. The first step of the Mond process involves equilibrating impure nickel with COgandNiCO4gatabout 50°C. The purpose of this step is to convert as much nickel as possible into the gas phase. Calculate the equilibrium constant for the preceding reaction at 50.°C.
f. In the second step of the Mond process, the gaseousNiCO4g is isolated and heated at 227°C. The purpose of this step is to deposit as much nickel as possible as pure solid (the reverse of the preceding reaction). Calculate the equilibrium constant for the preceding reaction at 227°C.
g. Why is temperature increased for the second step of the Mond process?

h. The Mond process relies on the volatility of NiCO4 for its success. Only pressures and temperatures at which NiCO4, is a gas are useful. A recently developed variation of the Mond process carries out the first step at higher pressures and a temperature of 152°C. Estimate the maximum pressure of NiCO4gthat can be attained before the gas will liquefy at 152°C. The boiling point for NiCO4is 42°C, and the enthalpy of vaporization is29.0kJ/mol . (Hint: The phase-change reaction and the corresponding equilibrium expression are
NiCO4INiCO4gK=PNiCO4
NiCO4gwill liquefy when the pressure of role="math" NiCO4is greater than the K value.)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free