Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Make a graph of [A] versus time for zero-, first-, and second-order reactions. From these graphs, compare successive half-lives.

Short Answer

Expert verified

For a zero-order reaction, the plot of concentration of reactant vs time is a straight line (linear) with a negative slope and non-zero intercept.

For a first-order reaction, the plot of concentration of reactant vs time is an exponential curve withthe concentration of the reactant decreasing exponentially with time.

For a second-order reaction, the plot of concentration of reactant vs time is an exponential curve with the concentration of the reactant decreasing exponentially with time.

Step by step solution

01

Analyzing the graph of [A] versus time for zero-, first-, and second-order reactions.

For a zero-order reaction, the plot between the concentration of reactant vs time is found to be a straight line (linear) having a negative slope and an intercept that is not zero.

For a first-order reaction, the plot of concentration of reactant vs time is an exponential curve in which the concentration of the reactant decreases exponentially with time.

In the case of a second-order reaction, the plot of concentration of reactant vs time is found to be an exponential curve where the concentration of the reactant decreases exponentially with time.

02

Determining the half-life reactions for zero-, first-, and second-order reactions by analyzing their respective graphs.

For zero order reaction, according to the graph, the half-life period corresponds to t1/2=A02k. Thus, for a zero-order reaction, the half-life period is directly proportional to the initial concentration.

For the first-order reaction, according to the graph, the half-life period corresponds to t1/2=0.693k. Thus, for first-order reactions, the half-life period is independent of the initial concentration.

For a second-order reaction, according to the graph, the half-life period corresponds to t1/2=1kA0. Thus, for first-order reactions, the half-life period is inversely proportional to the initial concentration of reactants.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The hydroxyl radical (OH)is an important oxidizing agent in the atmosphere. At 298 K the rate constant for the reaction of (OH)with benzene is1.24ร—10-12molecules-1. Calculate the value of the rate constant inLmol-1s-1.

Hydrogen peroxide decomposes to water and oxygengas with the aid of a catalyst (MnO2). The activationenergy of the uncatalyzed reaction is 70.0 kJ/mol. Whenthe catalyst is added, the activation energy at 20.0 oC is42.0 kJ/mol. Theoretically, to what temperature (8C)would one have to heat the hydrogen peroxide solutionso that the rate of the uncatalyzed reaction is equal tothe rate of the catalyzed reaction at 20.0 oC? Assume thefrequency factor A is constant, and assume the initialconcentrations are the same.

The rate law for the reaction 2NOBr(g)โ†’2NO(g)+Br2(g)at some temperature isRate=-d[NOBr]/dt=k[NOBr]2

a. If the half-life for this reaction is 2.00 s when [NOBr]0=0.900M, calculate the value of k for this reaction.

b. How much time is required for the concentration of NOBr to decrease to 0.100 M?

Consider the hypothetical reaction

A+B+2Cโ†’2D+3E

In a study of this reaction, three experiments were run at the same temperature. The rate is defined as -d[B]/dt.

Experiment 1:

[A]0=2.0M[B]0=1.0ร—10-3M[C]0=1.0M

[B](mol/L)โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€ŠTime(s)2.7ร—10-4โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š1.0ร—1051.6ร—10-4โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š2.0ร—1051.1ร—10-4โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š3.0ร—1058.5ร—10-5โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š4.0ร—1056.9ร—10-5โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š5.0ร—1055.8ร—10-5โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š6.0ร—105

Experiment 2:

[A]0=1.0ร—10-2M[B]0=3.0M[C]0=1.0M

[A](mol/L)โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€ŠTime(s)8.9ร—10-3โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š1.07.1ร—10-3โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š3.05.5ร—10-3โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š5.03.8ร—10-3โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š8.02.9ร—10-3โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š10.02.0ร—10-3โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š13.0

Experiment 3:

[A]0=10.0M[B]0=5.0M[C]0=5.0ร—10-1M

[C](mol/L)โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€ŠTime(s)โ€Šโ€Šโ€Šโ€Š0.43โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š1.0ร—10-2โ€Šโ€Šโ€Šโ€Š0.36โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š2.0ร—10-2โ€Šโ€Šโ€Šโ€Š0.29โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š3.0ร—10-2โ€Šโ€Šโ€Šโ€Š0.22โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š4.0ร—10-2โ€Šโ€Šโ€Šโ€Š0.15โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š5.0ร—10-2โ€Šโ€Šโ€Šโ€Š0.08โ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Šโ€Š6.0ร—10-2

Write the rate law for this reaction, and calculate the rate constant.

For the reaction

2N2O5(g)โ†’4NO2(g)+O2(g)

the following data were collected, where rate

localid="1663768620968" RATE=-dN2O5dt

Time(s)

T=338K[N2O5]

T=318K[N2O5]

0

1.00ร—10-1M

1.00ร—10-1M

100

6.14ร—10-2M

9.54ร—10-2M

300

2.33ร—10-2M

8.63ร—10-2M

600

5.41ร—10-3M

7.43ร—10-2M

900

1.26ร—10-3M

6.39ร—10-2M

Calculate Ea. for this reaction.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free