Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the solubility ofAgCN(s)(KSP=2.2x10-12) in a solution containing1.0MH+ (KaforHCNis6.2x10-10).

Short Answer

Expert verified

The solubility ofAgCN(s) in a solution containing1.0MH+ is 5.7×10-2mol/L.

Step by step solution

01

Introduction to the Concept

The solubility product constant is a constant that determines the solubility equilibrium that occurs between a substance in its solid-state and its ions in the aqueous state. It has the following general expression.

AxBy(S)xA+(aq)+yB-(aq)

KSP=A+×B-Y

The solubility product constant is Ksp, and the concentration is represented by square brackets.

02

Determination of the solubility equilibrium.

Given,

KspAgCNs=2.2x1012

KaHCN=6.2x1010

The solubility equilibrium ofAgCNsis,

AgCNsAg+aq+CNaq

KSP=2.2x10-121

Dissociation reaction,

HCNaqH+aq+CNaq

Ka=6.2x10-102

By reversing the equation (2)

H+aq+CNaqHCNaq

K=1Kr3

By adding equation (1) and (2),

AgCNs+H+aqAg+aq+HCNaq4

K1=3.5x10-3

03

Determination of the solubility of AgCN(s).

The reaction's equilibrium constant will be:

K1=Ag+×HCNH+

The ICE table for the equation (4),

Initial

s

1.0

0

0

Change

-s

1.0s

+s

+s

Equilibrium

0

1.0s

s

s

By substituting the values,

3.5x10-3=s21.00s

s=5.7×102mol/L

Therefore, the solubility of AgCNsis 5.7×10-2mol/L.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The following plot shows the pH curves for the titrations of various acids with 0.10 M NaOH (all of the acids were 50.0mL samples of 0.10 M concentration)

  1. Which pH curve corresponds to the weakest acid?
  2. Which pH curve corresponds to the strongest acid?

Which point on the pH curve would you examine to see if this acid is a strong acid or a weak acid (assuming you did not know the initial concentration of the acid)?

c. Which pH curve corresponds to an acid withKa1×10-6?

Calculate the pH after 0.020 moles of NaOH is added to 1.00 L of the solution in Exercise 28, and calculate the pH after 0.020 moles of HCl is added to 1.00 L of the solution in Exercise 28.

Which of the indicators in Fig. 8.8 could be used for doing the titrations in Exercises 67 and 69?

Question: Consider the titration of a generic weak acid HA with a strong base that gives the following titration curve:

On the curve indicate the points that correspond to the following.

a. The equivalence point

b. The maximum buffering region

c. pH=pKa

d. pH depends only on [HA]

e. pH depends only on [A]

f. pH depends only on the amount of excess strong base added

A friend asks the following: “Consider a buffered solution made up of the weak acid HA and its salt NaA. If a strong base such as NaOH is added, the HA reacts with the OH-to make A-. Thus, the amount of acid (HA) is decreased, and the amount of base (A-) is increased. Analogously, adding HCl to the buffered solution forms more of the acid (HA) by reacting with the base (A-). Thus how can we claim that a buffered solution resists changes in the pH of the solution?” How would you explain buffering to your friend?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free