Chapter 6: Problem 15
Calculate the productivity (i.e., DP) of a chemostat under the following conditions: 1\. Assume Monod kinetics apply. Assume that negligible amounts of biomass must be converted to product \((<1 \%)\). 2\. Assume the Luedeking-Piert equation for product formation (eq. 6.18) applies. 3\. Assume steady state: $$ \begin{array}{ll} D=0.8 \mu_{m} & Y_{X J s}^{M}=0.5 \mathrm{~g} X / \mathrm{g} S \\ \mu_{m}=1.0 \mathrm{~h}^{-1} & S_{0}=1000 \mathrm{mg} / \mathrm{l} \\ K_{s}=10 \mathrm{mg} / \mathrm{l} & \beta=0.5 \mathrm{~h}^{-1} \mathrm{mg} P / \mathrm{g} X \\ \alpha=0.4 \mathrm{mg} P / \mathrm{g} X & \end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.