Chapter 3: Problem 15
The enzyme, urease, is immobilized in Ca-alginate beads \(2 \mathrm{~mm}\) in diameter. When the urea concentration in the bulk liquid is \(0.5 \mathrm{~m} M\) the rate of urea hydrolysis is \(v=10 \mathrm{mmoles-1- \textrm {h } .}\) Diffusivity of urea in \(\mathrm{Ca}\)-alginate beads is \(D_{e}=1.5 \times 10^{-5} \mathrm{~cm}^{2} / \mathrm{sec}\), and the Michaelis constant for the enzyme is \(K_{m}^{\prime}=0.2 \mathrm{~m} M\). By neglecting the liquid film resistance on the beads (i.e., \(\left.\left[\mathrm{S}_{0}\right]=\left[\mathrm{S}_{\mathrm{s}}\right]\right)\) determine the following: a. Maximum rate of hydrolysis \(V_{m}\), Thiele modulus \((\phi)\), and effectiveness factor \((\eta)\). b. What would be the \(V_{w}, \phi\), and \(\eta\) values for a particle size of \(\mathrm{Dp}=4 \mathrm{~mm}\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.