The standard reduction potential for the process:
\(\left[\mathrm{Co}\left(\mathrm{H}_{2}
\mathrm{O}\right)_{6}\right]^{3+}+\mathrm{e}^{-}
\rightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2}
\mathrm{O}\right)_{6}\right]^{2+}\)
is \(1.8 \mathrm{~V}\). The standard reduction potential for the process:
\(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\mathrm{e}^{-}\)
\(\rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}\) is
\(0.1 \mathrm{~V} .\) Which of the
complex ion, \(\left[\mathrm{Co}\left(\mathrm{H}_{2}
\mathrm{O}\right)_{6}\right]^{2+}\) or
\(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}\)
can be oxidized to the corresponding cobalt (III) complex, by oxygen, in basic
medium, under standard condition? \(\left[\right.\) Given:
\(\left.E_{\mathrm{O}_{2} / \mathrm{OH}^{-}}^{\circ}=0.4 \mathrm{~V}\right]\)
(a) \(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\)
(b) \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}\)
(c) both
(d) none of these