Consider the following process of decay,
\({ }_{92} \mathrm{U}^{234} \rightarrow{ }_{90} \mathrm{Th}^{230}+{ }_{2}
\mathrm{He}^{4} ; t_{1 / 2}=2,50,000\) years
\({ }_{90} \mathrm{Th}^{230} \rightarrow{ }_{88} \mathrm{Ra}^{226}+{ }_{2}
\mathrm{He}^{4} ; t_{1 / 2}=80,000\) years
\({ }_{88} \mathrm{Ra}^{226} \rightarrow{ }_{86} \mathrm{Rn}^{222}+{ }_{2}
\mathrm{He}^{4} ; t_{1 / 2}=1600\) years
After the above process has occurred for a long time, a state is reached where
for every two thorium atoms formed from \({ }_{92} \mathrm{U}^{234}\), one
decomposes to form \({ }_{88} \mathrm{Ra}^{226}\) and for every two \({ }_{88}
\mathrm{Ra}^{226}\) formed, one decomposes. The ratio of \({ }_{90}
\mathrm{Th}^{230}\) to \({ }_{88} \mathrm{Ra}^{226}\) will be
(a) \(250000 / 80000\)
(b) \(80000 / 1600\)
(c) \(250000 / 1600\)
(d) \(251600 / 8\)