Chapter 11: Problem 77
For the consecutive unimolecular-type first-order reaction: \(\mathrm{A} \stackrel{k_{1}}{\longrightarrow} \mathrm{R} \stackrel{k_{2}}{\longrightarrow} \mathrm{S}\), the concentration of component ' \(\mathrm{R}\) ', \(C_{\mathrm{R}}\), at any time, ' \(t\) ' is given by \(C_{\mathrm{R}}=C_{\mathrm{AO}} \cdot K_{1}\left[\frac{e^{-k_{1} t}}{\left(k_{2}-k_{1}\right)}+\frac{e^{-k_{2} t}}{\left(k_{1}-k_{2}\right)}\right]\) If \(C_{\mathrm{A}}=C_{\mathrm{AO}}, C_{\mathrm{R}}=C_{\mathrm{s}}=0\) at \(t=0\), the time at which the maximum concentration of 'R' occurs is (a) \(t_{\max }=\frac{k_{2}-k_{1}}{\ln \left(k_{2} / k_{1}\right)}\) (b) \(t_{\max }=\frac{\ln \left(k_{2} / k_{1}\right)}{k_{2}-k_{1}}\) (c) \(t_{\max }=\frac{e^{k_{2} / k_{1}}}{k_{2}-k_{1}}\) (d) \(t_{\max }=\frac{e^{k_{2}-k_{1}}}{k_{2}-k_{1}}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.