Chapter 11: Problem 47
The acid catalysed reaction of acetic acid with ethanol: \(\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\) \(+\mathrm{H}_{2} \mathrm{O}\) follows the rate law: \(-\frac{\mathrm{d}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\mathrm{d} t}\) \(=K\left[\mathrm{H}^{+}\right] \quad\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \quad\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]\) \(=K^{\prime}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right] .\) When \(\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{0}=\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]_{0}=0.2 \mathrm{M}\) and \(\mathrm{pH}=3\), the half-life for the reaction is \(50 \mathrm{~min}\). The value of true rate constant, \(K\), of the reaction is (a) \(1.386 \times 10^{-2} \mathrm{~min}^{-1}\) (b) \(0.1 \mathrm{M}^{-1} \mathrm{~min}^{-1}\) (c) \(100 \mathrm{M}^{-2} \mathrm{~min}^{-1}\) (d) \(13.86 \mathrm{~min}^{-1}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.