Chapter 10: Problem 5
Liquids \(\mathrm{A}\) and \(\mathrm{B}\) form an ideal solution. The plot of \(\frac{1}{X_{\mathrm{A}}}\) ( \(Y\) -axis) versus \(\frac{1}{Y_{\mathrm{A}}}\) \(\left(X\right.\) -axis) \(\left(\right.\) where \(X_{\mathrm{A}}\) and \(Y_{\mathrm{A}}\) are the mole fractions of A in liquid and vapour phases at equilibrium, respectively) is linear whose slope and intercept, respectively, are given as (a) \(\frac{P_{\Lambda}^{o}}{P_{\mathrm{B}}^{\circ}}, \frac{\left(P_{\mathrm{A}}^{0}-P_{\mathrm{B}}^{\circ}\right)}{P_{\mathrm{B}}^{\circ}}\) (b) \(\frac{P_{\mathrm{A}}^{\circ}}{P_{\mathrm{B}}^{\circ}}, \frac{\left(P_{\mathrm{B}}^{0}-P_{\mathrm{A}}^{\circ}\right)}{P_{\mathrm{B}}^{\circ}}\) (c) \(\frac{P_{\mathrm{B}}^{\circ}}{P_{\mathrm{A}}^{\circ}}, \frac{\left(P_{\mathrm{A}}^{\mathrm{o}}-P_{\mathrm{B}}^{\circ}\right)}{P_{\mathrm{B}}^{\circ}}\) (d) \(\frac{P_{\mathrm{B}}^{\circ}}{P_{\mathrm{A}}^{\circ}}, \frac{\left(P_{\mathrm{B}}^{0}-P_{\mathrm{A}}^{\circ}\right)}{P_{\mathrm{B}}^{\circ}}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.