Chapter 20: Problem 79
While \(\mathrm{Ti}^{3+}, \mathrm{V}^{3+}, \mathrm{Fe}^{3+}\) and \(\mathrm{Co}^{2+}\) can afford a large number of tetrahedral complexes, \(\mathrm{Cr}^{3+}\) never does this, the reason being (a) crystal field stabilisation energy in octahedral vis-à-vis tetrahedral \(\mathrm{Cr}^{3+}\) system plays the deciding role (b) \(\mathrm{Cr}^{3^{3}}\) forces high crystal field splitting with a varieties of ligands (c) electronegativity of \(\mathrm{Cr}^{3+}\) is the largest among these trivalent 3 d-metals and so chromium prefers to be associated with as many ligands as its radius permits (d) both (b) and (c)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.