Chapter 2: Problem 11
To study the spatial distribution of Japanese beetle larvae in the soil, researchers divided a \(12-\times 12\) -foot section of a cornfield into 144 one-foot squares. They counted the number of larvae \(Y\) in each square, with the results shown in the following table. \(^{57}\) $$ \begin{array}{|cc|} \hline & \text { Frequency (Number } \\ \text { Number of larvae } & \text { of squares) } \\ \hline 0 & 13 \\ 1 & 34 \\ 2 & 50 \\ 3 & 18 \\ 4 & 16 \\ 5 & 10 \\ 6 & 2 \\ 7 & 1 \\ \hline \text { Total } & 144 \\ \hline \end{array} $$ (a) The mean and SD of \(Y\) are \(\bar{y}=2.23\) and \(s=1.47\). What percentage of the observations are within (i) \(1 \mathrm{SD}\) of the mean? (ii) 2 SDs of the mean? (b) Determine the total number of larvae in all 144 squares. How is this number related to \(\bar{y} ?\) (c) Determine the median value of the distribution.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.