Consider the matrix
$$\mathrm{A}=\left(\begin{array}{ccc}
4 & i & 1 \\\\-i & 4 & -i \\\1 & i & 4\end{array}\right)$$
(a) Find the eigenvalues of \(\mathrm{A}\). Hint: Try \(\lambda=3\) in the
characteristic polynomial of \(\mathrm{A}\).
(b) For each \(\lambda\), find a basis for \(\mathcal{M}_{\lambda}\) the
eigenspace associated with the eigenvalue \(\lambda\).
(c) Use the Gram-Schmidt process to orthonormalize the above basis vectors.
(d) Calculate the projection operators (matrices) \(\mathrm{P}_{i}\) for each
subspace and verify that \(\sum_{i} \mathrm{P}_{i}=1\) and \(\sum_{i} \lambda_{i}
\mathrm{P}_{i}=\mathrm{A}\).
(e) Find the matrices \(\sqrt{\mathrm{A}}, \sin (\pi \mathrm{A} / 2)\), and
\(\cos (\pi \mathrm{A} / 2)\).
(f) Is A invertible? If so, find the eigenvalues and eigenvectors of
\(\mathrm{A}^{-1}\).