Chapter 4: Problem 23
Find \(\mathbf{T}^{\dagger}\) for each of the following linear operators. (a) \(\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) given by $$ \mathbf{T}\left(\begin{array}{l} x \\ y \end{array}\right)=\left(\begin{array}{l} x+y \\ x-y \end{array}\right) $$ (b) \(\mathbf{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) given by $$ \mathbf{T}\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} x+2 y-z \\ 3 x-y+2 z \\ -x+2 y+3 z \end{array}\right) $$ (c) \(\mathbf{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) given by $$ \mathbf{T}\left(\begin{array}{l} x \\ y \end{array}\right)=\left(\begin{array}{l} x \cos \theta-y \sin \theta \\ x \sin \theta+y \cos \theta \end{array}\right) $$ where \(\theta\) is a real number. What is \(\mathbf{T}^{\dagger} \mathbf{T}\) ? (d) \(\mathbf{T}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}\) given by $$ \mathbf{T}\left(\begin{array}{l} \alpha_{1} \\ \alpha_{2} \end{array}\right)=\left(\begin{array}{l} \alpha_{1}-i \alpha_{2} \\ i \alpha_{1}+\alpha_{2} \end{array}\right) $$ (e) \(\mathbf{T}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}\) given by $$ \mathbf{T}\left(\begin{array}{l} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{array}\right)=\left(\begin{array}{c} \alpha_{1}+i \alpha_{2}-2 i \alpha_{3} \\ -2 i \alpha_{1}+\alpha_{2}+i \alpha_{3} \\ i \alpha_{1}-2 i \alpha_{2}+\alpha_{3} \end{array}\right) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.