Chapter 4: Problem 21
4.21 In this problem, you will go through the steps of proving the rigorous statement of the Heisenberg uncertainty principle. Denote the expectation (average) value of an operator \(\mathbf{A}\) in a state \(|\Psi\rangle\) by \(A_{\text {avg }} .\) Thus, \(A_{\text {avg }}=\langle A\rangle=\) \(\langle\Psi|\mathbf{A}| \Psi\rangle .\) The uncertainty (deviation from the mean) in the normalized state \(|\Psi\rangle\) of the operator \(\mathbf{A}\) is given by $$ \Delta A=\sqrt{\left|\left(A-A_{\text {avg }}\right)^{2}\right\rangle}=\sqrt{\left\langle\Psi\left|\left(\mathbf{A}-A_{\text {avg }} 1\right)^{2}\right| \Psi\right\rangle} $$ (a) Show that for any two hermitian operators \(\mathbf{A}\) and \(\mathbf{B}\), we have $$ |\langle\Psi|\mathbf{A B}| \Psi\rangle|^{2} \leq\left\langle\Psi\left|\mathbf{A}^{2}\right| \Psi\right\rangle\left\langle\Psi\left|\mathbf{B}^{2}\right| \Psi\right\rangle $$ (b) Using the above and the triangle inequality for complex numbers, show that $$ |\langle\Psi|[\mathbf{A}, \mathbf{B}]| \Psi\rangle|^{2} \leq 4\left\langle\Psi\left|\mathbf{A}^{2}\right| \Psi\right\rangle\left\langle\Psi\left|\mathbf{B}^{2}\right| \Psi\right\rangle $$ (c) Define the operators \(\mathbf{A}^{\prime}=\mathbf{A}-\alpha \mathbf{1}, \mathbf{B}^{\prime}=\mathbf{B}-\beta \mathbf{1}\), where \(\alpha\) and \(\beta\) are real numbers. Show that \(\mathbf{A}^{\prime}\) and \(\mathbf{B}^{\prime}\) are hermitian and \(\left[\mathbf{A}^{\prime}, \mathbf{B}^{\prime}\right]=[\mathbf{A}, \mathbf{B}]\). (d) Now use all the results above to show the celebrated uncertainty relation Heisenberg uncertainty $$ (\Delta A)(\Delta B) \geq \frac{1}{2}|\langle\Psi|[\mathbf{A}, \mathbf{B}]| \Psi\rangle| $$ principle What does this reduce to for position operator \(\mathbf{x}\) and momentum operator \(\mathbf{p}\) if \([\mathbf{x}, \mathbf{p}]=i \hbar ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.