Chapter 36: Problem 5
In this problem, you are going to prove Bianchi's second identity in terms of curvature tensor. (a) Show that $$ D^{\omega} \mathbf{\Omega}\left(\mathbf{X}^{*}, \mathbf{Y}^{*}, \mathbf{Z}^{*}\right)=\operatorname{Cyc}\left(\mathbf{X}^{*}\left(\mathbf{\Omega}\left(\mathbf{Y}^{*}, \mathbf{Z}^{*}\right)\right)-\mathbf{\Omega}\left(\left[\mathbf{X}^{*}, \mathbf{Y}^{*}\right], \mathbf{Z}^{*}\right)\right) $$ (b) Using arguments similar to the text, show that $$ p\left(\mathbf{X}^{*}\left(\mathbf{\Omega}\left(\mathbf{Y}^{*}, \mathbf{Z}^{*}\right)\right)\right)=\nabla_{X} \mathbf{R}(\mathbf{Y}, \mathbf{Z}) $$ (c) Convince yourself that $$ p \boldsymbol{\Omega}\left(\left[\mathbf{X}^{*}, \mathbf{Y}^{*}\right], \mathbf{Z}^{*}\right)=\mathbf{R}\left(\pi_{*}\left[\mathbf{X}^{*}, \mathbf{Y}^{*}\right], \mathbf{Z}\right) . $$ (d) Use \(\pi_{*}=p \circ \boldsymbol{\theta}\) and the fact that $$ \boldsymbol{\theta}\left[\mathbf{X}^{*}, \mathbf{Y}^{*}\right]=d \boldsymbol{\theta}\left(\mathbf{X}^{*}, \mathbf{Y}^{*}\right)=\Theta\left(\mathbf{X}^{*}, \mathbf{Y}^{*}\right) $$ to show that \(\pi_{*}\left[\mathbf{X}^{*}, \mathbf{Y}^{*}\right]=\mathbf{T}(\mathbf{X}, \mathbf{Y})\). (e) Put everything together and show that \(\operatorname{Cyc}\left[\nabla_{X} \mathbf{R}(\mathbf{Y}, \mathbf{Z})\right]=0\) when torsiôn tensôr vânishes.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.