In this problem, you are going to prove Bianchi's second identity in terms of
curvature tensor.
(a) Show that
$$
D^{\omega} \mathbf{\Omega}\left(\mathbf{X}^{*}, \mathbf{Y}^{*},
\mathbf{Z}^{*}\right)=\operatorname{Cyc}\left(\mathbf{X}^{*}\left(\mathbf{\Omega}\left(\mathbf{Y}^{*},
\mathbf{Z}^{*}\right)\right)-\mathbf{\Omega}\left(\left[\mathbf{X}^{*},
\mathbf{Y}^{*}\right], \mathbf{Z}^{*}\right)\right)
$$
(b) Using arguments similar to the text, show that
$$
p\left(\mathbf{X}^{*}\left(\mathbf{\Omega}\left(\mathbf{Y}^{*},
\mathbf{Z}^{*}\right)\right)\right)=\nabla_{X} \mathbf{R}(\mathbf{Y},
\mathbf{Z})
$$
(c) Convince yourself that
$$
p \boldsymbol{\Omega}\left(\left[\mathbf{X}^{*}, \mathbf{Y}^{*}\right],
\mathbf{Z}^{*}\right)=\mathbf{R}\left(\pi_{*}\left[\mathbf{X}^{*},
\mathbf{Y}^{*}\right], \mathbf{Z}\right) .
$$
(d) Use \(\pi_{*}=p \circ \boldsymbol{\theta}\) and the fact that
$$
\boldsymbol{\theta}\left[\mathbf{X}^{*}, \mathbf{Y}^{*}\right]=d
\boldsymbol{\theta}\left(\mathbf{X}^{*},
\mathbf{Y}^{*}\right)=\Theta\left(\mathbf{X}^{*}, \mathbf{Y}^{*}\right)
$$
to show that \(\pi_{*}\left[\mathbf{X}^{*},
\mathbf{Y}^{*}\right]=\mathbf{T}(\mathbf{X}, \mathbf{Y})\).
(e) Put everything together and show that \(\operatorname{Cyc}\left[\nabla_{X}
\mathbf{R}(\mathbf{Y}, \mathbf{Z})\right]=0\) when torsiôn tensôr vânishes.