Consider a system of \(N\) particles whose total kinetic energy \(K\) and
potential energy \(U\) are given by
$$K(\dot{\mathbf{x}})=\frac{1}{2} \sum_{\alpha=1}^{N}
m_{\alpha}\left|\dot{\mathbf{x}}^{\alpha}\right|^{2}, \quad U(t,
\mathbf{x})=\sum_{\alpha \neq \beta} k_{\alpha
\beta}\left|\mathbf{x}^{\alpha}-\mathbf{x}^{\beta}\right|^{-1},$$
where \(\mathbf{x}^{\alpha}=\left(x^{\alpha}, y^{\alpha}, z^{\alpha}\right)\) is
the position of the \(\alpha\) th particle. The variational problem is of the
form
$$\mathbf{L}[\mathbf{x}]=\int_{-\infty}^{\infty} L(t, \mathbf{x},
\dot{\mathbf{x}}) d t=\int_{-\infty}^{\infty}[K(\dot{\mathbf{x}})-U(t,
\mathbf{x})] d t .$$
(a) Show that the Euler-Lagrange equations are identical to Newton's second
law of motion.
(b) Write the infinitesimal criterion for the vector field
$$\mathbf{v}=\tau(t, \mathbf{x}) \frac{\partial}{\partial
t}+\sum_{\alpha}\left[\xi^{\alpha}(t, \mathbf{x}) \frac{\partial}{\partial
x^{\alpha}}+\eta^{\alpha}(t, \mathbf{x}) \frac{\partial}{\partial
y^{\alpha}}+\zeta^{\alpha}(t, \mathbf{x}) \frac{\partial}{\partial
z^{\alpha}}\right]$$
to be the generator of a 1 -parameter group of variational symmetries of
\(\mathbf{L}\).