Chapter 30: Problem 13
Show that the vector operator $$ \mathbf{C}_{i} \equiv \mathbf{M}_{i j} \mathbf{P}^{j}=\eta^{k j} \mathbf{M}_{i j} \mathbf{P}_{k} $$ satisfies the following commutation relations: \(\left[\mathbf{C}_{i}, \mathbf{P}_{j}\right]=\eta_{i j} \mathbf{P}^{2}-\mathbf{P}_{i} \mathbf{P}_{j}, \quad\left[\mathbf{C}_{i}, \mathbf{M}_{j k}\right]=\eta_{i k} \mathbf{C}_{j}-\eta_{i j} \mathbf{C}_{k}\), \(\left[\mathbf{C}_{i}, \mathbf{C}_{j}\right]=\mathbf{M}_{i j} \mathbf{P}^{2}\) Show also that \(\left[\mathbf{C}^{2}, \mathbf{M}_{j k}\right]=0, \mathbf{C}^{i} \mathbf{P}_{i}=0\), and $$ \mathbf{P}^{i} \mathbf{C}_{i}=-(n-1) \mathbf{P}^{2}, \quad\left[\mathbf{C}^{2}, \mathbf{P}_{i}\right]=\left\\{2 \mathbf{C}_{i}+(n-1) \mathbf{P}_{i}\right\\} \mathbf{P}^{2} . $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.