Chapter 30: Problem 10
Show that the generators of \(\mathfrak{s o}(3,1)\), $$ \begin{array}{l} \mathbf{M} \equiv\left(M_{1}, M_{2}, M_{3}\right) \equiv\left(\mathrm{M}_{23}, \mathrm{M}_{31}, \mathrm{M}_{12}\right) \\ \mathbf{N} \equiv\left(N_{1}, N_{2}, N_{3}\right) \equiv\left(\mathrm{M}_{01}, \mathrm{M}_{02}, \mathrm{M}_{03}\right) \end{array} $$ satisfy the commutation relations $$ \left[M_{i}, M_{j}\right]=-\epsilon_{i j k} M_{k}, \quad\left[N_{i}, N_{j}\right]=\epsilon_{i j k} M_{k}, \quad\left[M_{i}, N_{j}\right]=-\epsilon_{i j k} N_{k}, $$ and that \(\mathbf{M}^{2}-\mathbf{N}^{2}\) and \(\mathbf{M} \cdot \mathbf{N}\) commute with all the \(M\) 's and the \(N\) 's.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.