The algebra \(\mathcal{A}\) has a basis \(\\{\mathbf{1}, \mathbf{e}\\}\) with
\(\mathbf{e}^{2}=\mathbf{1}\).
(a) Show that \(\left\\{\mathbf{f}_{1}, \mathbf{f}_{2}\right\\}\) with
\(\mathbf{f}_{1}=\frac{1}{2}(\mathbf{1}+\mathbf{e})\) and
\(\mathbf{f}_{2}=\frac{1}{2}(\mathbf{1}-\mathbf{e})\) is also a basis.
(b) Show that \(\mathcal{A}=\mathcal{L}_{1} \oplus_{V} \mathcal{L}_{2}\), where
\(\mathcal{L}_{i}=\mathcal{A} \mathbf{f}_{i}, i=1,2\) and \(\oplus_{V}\) indicates
a vector space direct sum.
(c) Show that \(\mathcal{L}_{1}\) an \(\mathcal{L}_{2}\) are actually two-sided
ideals and that \(\mathcal{L}_{1} \mathcal{L}_{2}=\\{\mathbf{0}\\}\). Therefore,
\(\mathcal{A}=\mathcal{L}_{1} \oplus \mathcal{L}_{2}\)
(d) Multiply an arbitrary element of \(\mathcal{L}_{i}, i=1,2\), by an arbitrary
element of \(\mathcal{A}\) to show that
\(\mathcal{L}_{i}=\operatorname{Span}\left\\{\mathbf{f}_{i}\right\\}, i=1,2 .\)
Thus, \(\mathcal{L}_{i} \cong \mathbb{R}, i=1,2\), or
\(\mathcal{A}=\mathbb{R} \oplus \mathbb{R} .\)