Chapter 2: Problem 15
Show that $$ \begin{array}{l} \int_{-\infty}^{\infty}\left(t^{10}-t^{6}+5 t^{4}-5\right) e^{-t^{4}} d t \\ \leq \sqrt{\int_{-\infty}^{\infty}\left(t^{4}-1\right)^{2} e^{-t^{4}} d t} \sqrt{\int_{-\infty}^{\infty}\left(t^{6}+5\right)^{2} e^{-t^{4}} d t} \end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.