Chapter 19: Problem 4
Consider the Bessel DE. (a) Show that the Liouville substitution transforms the Bessel DE into $$\frac{d^{2} v}{d t^{2}}+\left(k^{2}-\frac{v^{2}-1 / 4}{t^{2}}\right) v=0$$ (b) Find the equations obtained from the Prüfer substitution, and show that for large \(x\) these equations reduce to $$\phi^{\prime}=k\left(1-\frac{a}{2 k^{2} x^{2}}\right)+\frac{O(1)}{x^{3}}, \quad \frac{R^{\prime}}{R}=\frac{O(1)}{x^{3}}$$ where \(a=v^{2}-\frac{1}{4}\). (c) Integrate these equations from \(x\) to \(b>x\) and take the limit as \(b \rightarrow \infty\) to get $$\phi(x)=\phi_{\infty}+k x+\frac{a}{2 k x}+\frac{O(1)}{x^{2}}, \quad R(x)=R_{\infty}+\frac{O(1)}{x^{2}},$$ where \(\phi_{\infty}=\lim _{b \rightarrow \infty}(\phi(b)-k b)\) and \(R_{\infty}=\lim _{b \rightarrow \infty} R(b)\). (d) Substitute these and the appropriate expression for \(Q^{-1 / 4}\) in Eq. (19.16) and show that $$v(x)=\frac{R_{\infty}}{\sqrt{k}} \cos \left(k x-k x_{\infty}+\frac{v^{2}-1 / 4}{2 k x}\right)+\frac{O(1)}{x^{2}},$$ where \(k x_{\infty} \equiv \pi / 2-\phi_{\infty}\). (e) Choose \(R_{\infty}=\sqrt{2 / \pi}\) for all solutions of the Bessel \(\mathrm{DE}\), and let $$k x_{\infty}=\left(v+\frac{1}{2}\right) \frac{\pi}{2} \quad \text { and } \quad k x_{\infty}=\left(v+\frac{3}{2}\right) \frac{\pi}{2}$$ for the Bessel functions \(J_{v}(x)\) and the Neumann functions \(Y_{v}(x)\), respectively, and find the asymptotic behavior of these two functions.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.