Consider the Bessel DE.
(a) Show that the Liouville substitution transforms the Bessel DE into
$$\frac{d^{2} v}{d t^{2}}+\left(k^{2}-\frac{v^{2}-1 / 4}{t^{2}}\right) v=0$$
(b) Find the equations obtained from the Prüfer substitution, and show that
for large \(x\) these equations reduce to
$$\phi^{\prime}=k\left(1-\frac{a}{2 k^{2} x^{2}}\right)+\frac{O(1)}{x^{3}},
\quad \frac{R^{\prime}}{R}=\frac{O(1)}{x^{3}}$$
where \(a=v^{2}-\frac{1}{4}\).
(c) Integrate these equations from \(x\) to \(b>x\) and take the limit as \(b
\rightarrow \infty\) to get
$$\phi(x)=\phi_{\infty}+k x+\frac{a}{2 k x}+\frac{O(1)}{x^{2}}, \quad
R(x)=R_{\infty}+\frac{O(1)}{x^{2}},$$
where \(\phi_{\infty}=\lim _{b \rightarrow \infty}(\phi(b)-k b)\) and
\(R_{\infty}=\lim _{b \rightarrow \infty} R(b)\).
(d) Substitute these and the appropriate expression for \(Q^{-1 / 4}\) in Eq.
(19.16) and show that
$$v(x)=\frac{R_{\infty}}{\sqrt{k}} \cos \left(k x-k x_{\infty}+\frac{v^{2}-1 /
4}{2 k x}\right)+\frac{O(1)}{x^{2}},$$
where \(k x_{\infty} \equiv \pi / 2-\phi_{\infty}\).
(e) Choose \(R_{\infty}=\sqrt{2 / \pi}\) for all solutions of the Bessel
\(\mathrm{DE}\), and let
$$k x_{\infty}=\left(v+\frac{1}{2}\right) \frac{\pi}{2} \quad \text { and }
\quad k x_{\infty}=\left(v+\frac{3}{2}\right) \frac{\pi}{2}$$
for the Bessel functions \(J_{v}(x)\) and the Neumann functions \(Y_{v}(x)\),
respectively, and find the asymptotic behavior of these two functions.