The Laplace transform \(L[f]\) of a function \(f(t)\) is defined as
$$L[f](s) \equiv \int_{0}^{\infty} e^{-s t} f(t) d t$$
Show that the Laplace transform of
(a) \(f(t)=1\) is \(\frac{1}{s}\),
where \(s>0\).
(b) \(f(t)=\cosh \omega t \quad\) is \(\frac{s}{s^{2}-\omega^{2}}\), where
\(s^{2}>\omega^{2}\).
(c) \(\quad f(t)=\sinh \omega t\)
is \(\frac{\omega}{s^{2}-\omega^{2}}\), where \(s^{2}>\omega^{2}\).
(d) \(f(t)=\cos \omega t \quad\) is \(\frac{s}{s^{2}+\omega^{2}}\).
(e) \(f(t)=\sin \omega t \quad\) is \(\frac{\omega}{s^{2}+\omega^{2}}\).
(f) \(f(t)=e^{\omega t}\) for \(t>0\), is \(\frac{1}{s-\omega}, \quad\) where
\(s>\omega\).
(g) \(\quad f(t)=t^{n}\)
is \(\frac{\Gamma(n+1)}{s^{n+1}}\), where \(s>0, n>-1\).