Consider the function \(f(z)=(1+z)^{\alpha}\).
(a) Show that \(d^{n} f /\left.d z^{n}\right|_{z=0}=\Gamma(\alpha+1) /
\Gamma(\alpha-n+1)\), and use it to derive the relation
$$
\begin{array}{l}
(1+z)^{\alpha}=\sum_{n=0}^{\infty}\left(\begin{array}{l}
\alpha \\
n
\end{array}\right) z^{n}, \quad \text { where } \\
\left(\begin{array}{l}
\alpha \\
n
\end{array}\right) \equiv \frac{\alpha !}{n !(\alpha-n) !} \equiv
\frac{\Gamma(\alpha+1)}{n ! \Gamma(\alpha-n+1)} .
\end{array}
$$
(b) Show that for general complex numbers \(a\) and \(b\) we can formally write
$$
(a+b)^{\alpha}=\sum_{n=0}^{\infty}\left(\begin{array}{l}
\alpha \\
n
\end{array}\right) a^{n} b^{\alpha-n}
$$
(c) Show that if \(\alpha\) is a positive integer \(m\), the series in part (b)
truncates at
\(n=m .\)