Chapter 11: Problem 6
Evaluate each of the following integrals by turning it into a contour integral around a unit circle. (a) \(\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}\). (b) \(\int_{0}^{2 \pi} \frac{d \theta}{a+\cos \theta}\) where \(a>1\). (c) \(\int_{0}^{2 \pi} \frac{d \theta}{1+\sin ^{2} \theta}\). (d) \(\int_{0}^{2 \pi} \frac{d \theta}{\left(a+b \cos ^{2} \theta\right)^{2}} \quad\) where \(a, b>0\). (e) \(\int_{0}^{2 \pi} \frac{\cos ^{2} 3 \theta}{5-4 \cos 2 \theta} d \theta\). (f) \(\int_{0}^{\pi} \frac{d \phi}{1-2 a \cos \phi+a^{2}} \quad\) where \(a \neq \pm 1\). (g) \(\int_{0}^{\pi} \frac{\cos ^{2} 3 \phi d \phi}{1-2 a \cos \phi+a^{2}} \quad\) where \(a \neq \pm 1\). (h) \(\int_{0}^{\pi} \frac{\cos 2 \phi d \phi}{1-2 a \cos \phi+a^{2}} \quad\) where \(a \neq \pm 1\). (i) \(\int_{0}^{\pi} \tan (x+i a) d x\) where \(a \in \mathbb{R}\). (j) \(\int_{0}^{\pi} e^{\cos \phi} \cos (n \phi-\sin \phi) d \phi \quad\) where \(n \in \mathbb{Z}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.